6,273 research outputs found

    Distribution of Microscopic Energy Flux in Equilibrium State

    Full text link
    The distribution function P(j) of the microscopic energy flux, j, in equilibrium state is studied. It is observed that P(j) has a broad peak in small j regime and a stretched-exponential decay for large j. The peak structure originates in a potential advection term and energy transfer term between the particles. The stretched exponential tail comes from the momentum energy advection term.Comment: 5 pages, 2 figure

    Nonequilibrium Microscopic Distribution of Thermal Current in Particle Systems

    Full text link
    A nonequilibrium distribution function of microscopic thermal current is studied by a direct numerical simulation in a thermal conducting steady state of particle systems. Two characteristic temperatures of the thermal current are investigated on the basis of the distribution. It is confirmed that the temperature depends on the current direction; Parallel temperature to the heat-flux is higher than antiparallel one. The difference between the parallel temperature and the antiparallel one is proportional to a macroscopic temperature gradient.Comment: 4 page

    Computing Lyapunov spectra with continuous Gram-Schmidt orthonormalization

    Full text link
    We present a straightforward and reliable continuous method for computing the full or a partial Lyapunov spectrum associated with a dynamical system specified by a set of differential equations. We do this by introducing a stability parameter beta>0 and augmenting the dynamical system with an orthonormal k-dimensional frame and a Lyapunov vector such that the frame is continuously Gram-Schmidt orthonormalized and at most linear growth of the dynamical variables is involved. We prove that the method is strongly stable when beta > -lambda_k where lambda_k is the k'th Lyapunov exponent in descending order and we show through examples how the method is implemented. It extends many previous results.Comment: 14 pages, 10 PS figures, ioplppt.sty, iopl12.sty, epsfig.sty 44 k

    Interminiband Rabi oscillations in biased semiconductor superlattices

    Full text link
    Carrier dynamics at energy level anticrossings in biased semiconductor superlattices, was studied in the time domain by solving the time-dependent Schroedinger equation. The resonant nature of interminiband Rabi oscillations has been explicitly demonstrated to arise from interference of intrawell and Bloch oscillations. We also report a simulation of direct Rabi oscillations across three minibands, in the high field regime, due to interaction between three strongly coupled minibands.Comment: 13 pages, 16 figure

    Study on Voltage Controller of Self-Excited Induction Generator Using Controlled Shunt Capacitor, SVC Magnetic Energy Recovery Switch

    Get PDF
    Reactive compensation is required to maintain terminal voltage of induction generator under varying load and speed operation. A new variable shunt capacitor, which is called SVC magnetic energy recovery switch (SVC MERS), is proposed. The operation principle, characteristics of injected current, operating range of reactive compensation of SVC MERS in star and delta configuration were investigated. Application for induction generator voltage controller, which is required leading reactive compensator, is suitable for SVC MERS. Small scale experiments were conducted to verify the proposed system performance to control induction generator voltage in variable load and speed conditions. The advantage of this device is simple control with low switching frequency. Moreover in delta configuration, the SVC MERS current is low means downsizing of heatsink can be achieved. Keywords : Voltage controller, induction generator, reactive compensation, SVC MER

    N-tree approximation for the largest Lyapunov exponent of a coupled-map lattice

    Full text link
    The N-tree approximation scheme, introduced in the context of random directed polymers, is here applied to the computation of the maximum Lyapunov exponent in a coupled map lattice. We discuss both an exact implementation for small tree-depth nn and a numerical implementation for larger nns. We find that the phase-transition predicted by the mean field approach shifts towards larger values of the coupling parameter when the depth nn is increased. We conjecture that the transition eventually disappears.Comment: RevTeX, 15 pages,5 figure

    Superstructure-induced splitting of Dirac cones in silicene

    Full text link
    Atomic scale engineering of two-dimensional materials could create devices with rich physical and chemical properties. External periodic potentials can enable the manipulation of the electronic band structures of materials. A prototypical system is 3x3-silicene/Ag(111), which has substrate-induced periodic modulations. Recent angle-resolved photoemission spectroscopy measurements revealed six Dirac cone pairs at the Brillouin zone boundary of Ag(111), but their origin remains unclear [Proc. Natl. Acad. Sci. USA 113, 14656 (2016)]. We used linear dichroism angle-resolved photoemission spectroscopy, the tight-binding model, and first-principles calculations to reveal that these Dirac cones mainly derive from the original cones at the K (K') points of free-standing silicene. The Dirac cones of free-standing silicene are split by external periodic potentials that originate from the substrate-overlayer interaction. Our results not only confirm the origin of the Dirac cones in the 3x3-silicene/Ag(111) system, but also provide a powerful route to manipulate the electronic structures of two-dimensional materials.Comment: 6 pages, 3 figure
    corecore