961 research outputs found

    Female rat hippocampal cell density after conditioned place preference

    Get PDF
    The hippocampus is important for learning tasks, such as conditioned place preference (CPP), which is widely used as a model for studying the reinforcing effects of drugs with dependence liability. Long-term opiate use may produce maladaptive plasticity in the brain structures involved in learning and memory, such as the hippocampus. We investigated the phenomenon of conditioning with morphine on the cell density of female rat hippocampus. Forty-eight female Wistar rats weighing on average 200-250 g were used. Rats were distributed into eight groups. Experimental groups received morphine daily (three days) at different doses (2.5, 5, 7.5 mg/kg) and the control-saline group received normal saline (1 ml/kg), and then the CPP test was performed. Three sham groups received only different doses (2.5, 5, 7.5 mg/kg) of morphine without CPP test. Forty-eight hours after behavioural testing animals were decapitated under chloroform anaesthesia and their brains were fixed, and after tissue processing, slices were stained with cresyl violet for neurons and phosphotungstic acid haematoxylin for astrocytes. The maximum response was obtained with 5 mg/kg of morphine. The density of neurons in CA1 and CA3 areas of hippocampus after injection of morphine and CPP was decreased. The number of astrocytes in different areas of hippocampus was increased after injection of morphine and CPP. It seems that the effective dose was 5 mg/kg, as it led to the CPP. We concluded that both injection of morphine and CPP can decrease the density of neurons and also increase the number of astrocytes in the rat hippocampus

    Transparent Semiconductor-Superconductor Interface and Induced Gap in an Epitaxial Heterostructure Josephson Junction

    Full text link
    Measurement of multiple Andreev reflection (MAR) in a Josephson junction made from an InAs heterostructure with epitaxial aluminum is used to quantify the highly transparent semiconductor-superconductor interface, indicating near-unity transmission. The observed temperature dependence of MAR does not follow a conventional BCS form, but instead agrees with a model in which the density of states in the quantum well acquires an effective induced gap, in our case 180 {\mu}eV, close to that of the epitaxial superconductor. Carrier density dependence of MAR is investigated using a depletion gate, revealing the subband structure of the semiconductor quantum well, consistent with magnetotransport experiment of the bare InAs performed on the same wafer.Comment: Includes supplementary materia

    Conjugation of quantum dots on carbon nanotubes for medical diagnosis and treatment

    Get PDF
    Cancer is one of the leading causes of death worldwide and early detection provides the best possible prognosis for cancer patients. Nanotechnology is the branch of engineering that deals with the manipulation of individual atoms and molecules. This area of science has the potential to help identify cancerous cells and to destroy them by various methods such as drug delivery or thermal treatment of cancer. Carbon nanotubes (CNT) and quantum dots (QDs) are the two nanoparticles, which have received considerable interest in view of their application for diagnosis and treatment of cancer. Fluorescent nanoparticles known as QDs are gaining momentum as imaging molecules with life science and clinical applications. Clinically they can be used for localization of cancer cells due to their nano size and ability to penetrate individual cancer cells and high-resolution imaging derived from their narrow emission bands compared with organic dyes. CNTs are of interest to the medical community due to their unique properties such as the ability to deliver drugs to a site of action or convert optical energy into thermal energy. By attaching antibodies that bind specifically to tumor cells, CNTs can navigate to malignant tumors. Once at the tumor site, the CNTs enter into the cancer cells by penetration or endocytosis, allowing drug release, and resulting in specific cancer cell death. Alternatively, CNTs can be exposed to near-infrared light in order to thermally destroy the cancer cells. The amphiphilic nature of CNTs allows them to penetrate the cell membrane and their large surface area (in the order of 2600 m2/g) allows drugs to be loaded into the tube and released once inside the cancer cell. Many research laboratories, including our own, are investigating the conjugation of QDs to CNTs to allow localization of the cancer cells in the patient, by imaging with QDs, and subsequent cell killing, via drug release or thermal treatment. This is an area of huge interest and future research and therapy will focus on the multimodality of nanoparticles. In this review, we seek to explore the biomedical applications of QDs conjugated to CNTs, with a particular emphasis on their use as therapeutic platforms in oncology

    Two-dimensional epitaxial superconductor-semiconductor heterostructures: A platform for topological superconducting networks

    Full text link
    Progress in the emergent field of topological superconductivity relies on synthesis of new material combinations, combining superconductivity, low density, and spin-orbit coupling (SOC). For example, theory [1-4] indicates that the interface between a one-dimensional (1D) semiconductor (Sm) with strong SOC and a superconductor (S) hosts Majorana modes with nontrivial topological properties [5-8]. Recently, epitaxial growth of Al on InAs nanowires was shown to yield a high quality S-Sm system with uniformly transparent interfaces [9] and a hard induced gap, indicted by strongly suppressed sub gap tunneling conductance [10]. Here we report the realization of a two-dimensional (2D) InAs/InGaAs heterostructure with epitaxial Al, yielding a planar S-Sm system with structural and transport characteristics as good as the epitaxial wires. The realization of 2D epitaxial S-Sm systems represent a significant advance over wires, allowing extended networks via top-down processing. Among numerous potential applications, this new material system can serve as a platform for complex networks of topological superconductors with gate-controlled Majorana zero modes [1-4]. We demonstrate gateable Josephson junctions and a highly transparent 2D S-Sm interface based on the product of excess current and normal state resistance

    Optimal number of pigments in photosynthetic complexes

    Full text link
    We study excitation energy transfer in a simple model of photosynthetic complex. The model, described by Lindblad equation, consists of pigments interacting via dipole-dipole interaction. Overlapping of pigments induces an on-site energy disorder, providing a mechanism for blocking the excitation transfer. Based on the average efficiency as well as robustness of random configurations of pigments, we calculate the optimal number of pigments that should be enclosed in a pigment-protein complex of a given size. The results suggest that a large fraction of pigment configurations are efficient as well as robust if the number of pigments is properly chosen. We compare optimal results of the model to the structure of pigment-protein complexes as found in nature, finding good agreement.Comment: 20 pages, 7 figures; v2.: new appendix, published versio

    Energy-scales convergence for optimal and robust quantum transport in photosynthetic complexes

    Get PDF
    Underlying physical principles for the high efficiency of excitation energy transfer in light-harvesting complexes are not fully understood. Notably, the degree of robustness of these systems for transporting energy is not known considering their realistic interactions with vibrational and radiative environments within the surrounding solvent and scaffold proteins. In this work, we employ an efficient technique to estimate energy transfer efficiency of such complex excitonic systems. We observe that the dynamics of the Fenna-Matthews-Olson (FMO) complex leads to optimal and robust energy transport due to a convergence of energy scales among all important internal and external parameters. In particular, we show that the FMO energy transfer efficiency is optimum and stable with respect to the relevant parameters of environmental interactions and Frenkel-exciton Hamiltonian including reorganization energy λ\lambda, bath frequency cutoff γ\gamma, temperature TT, bath spatial correlations, initial excitations, dissipation rate, trapping rate, disorders, and dipole moments orientations. We identify the ratio of \lambda T/\gamma\*g as a single key parameter governing quantum transport efficiency, where g is the average excitonic energy gap.Comment: minor revisions, removing some figures, 19 pages, 19 figure

    Investigation of multi-phase tubular permanent magnet linear generator for wave energy converters

    Get PDF
    In this article, an investigation into different magnetization topologies for a long stator tubular permanent magnet linear generator is performed through a comparison based on the cogging force disturbance, the power output, and the cost of the raw materials of the machines. The results obtained from finite element analysis simulation are compared with an existing linear generator described in [1]. To ensure accurate results, the generator developed in [1] is built with 3D CAD and simulated using the finite-element method, and the obtained results are verified with the source.The PRIMaRE project

    Quantized conductance doubling and hard gap in a two-dimensional semiconductor-superconductor heterostructure

    Get PDF
    The prospect of coupling a two-dimensional (2D) semiconductor heterostructure to a superconductor opens new research and technology opportunities, including fundamental problems in mesoscopic superconductivity, scalable superconducting electronics, and new topological states of matter. For instance, one route toward realizing topological matter is by coupling a 2D electron gas (2DEG) with strong spin-orbit interaction to an s-wave superconductor. Previous efforts along these lines have been hindered by interface disorder and unstable gating. Here, we report measurements on a gateable InGaAs/InAs 2DEG with patterned epitaxial Al, yielding multilayer devices with atomically pristine interfaces between semiconductor and superconductor. Using surface gates to form a quantum point contact (QPC), we find a hard superconducting gap in the tunneling regime, overcoming the soft-gap problem in 2D superconductor-semiconductor hybrid systems. With the QPC in the open regime, we observe a first conductance plateau at 4e^2/h, as expected theoretically for a normal-QPC-superconductor structure. The realization of a hard-gap semiconductor-superconductor system that is amenable to top-down processing provides a means of fabricating scalable multicomponent hybrid systems for applications in low-dissipation electronics and topological quantum information.Comment: includes main text, supplementary information and code for simulations. Published versio

    Superconducting, Insulating, and Anomalous Metallic Regimes in a Gated Two-Dimensional Semiconductor-Superconductor Array

    Full text link
    The superconductor-insulator transition in two dimensions has been widely investigated as a paradigmatic quantum phase transition. The topic remains controversial, however, because many experiments exhibit a metallic regime with saturating low-temperature resistance, at odds with conventional theory. Here, we explore this transition in a novel, highly controllable system, a semiconductor heterostructure with epitaxial Al, patterned to form a regular array of superconducting islands connected by a gateable quantum well. Spanning nine orders of magnitude in resistance, the system exhibits regimes of superconducting, metallic, and insulating behavior, along with signatures of flux commensurability and vortex penetration. An in-plane magnetic field eliminates the metallic regime, restoring the direct superconductor-insulator transition, and improves scaling, while strongly altering the scaling exponent
    corecore