88 research outputs found

    2-Sulfonylpyrimidines as Privileged Warheads for the Development of S. aureus Sortase A Inhibitors

    Get PDF
    Staphylococcus aureus is one of the most frequent causes of nosocomial and community-acquired infections, with emerging multiresistant isolates causing a significant burden to public health systems. We identified 2-sulfonylpyrimidines as a new class of potent inhibitors against S. aureus sortase A acting by covalent modification of the active site cysteine 184. Series of derivatives were synthesized to derive structure-activity relationship (SAR) with the most potent compounds displaying low micromolar K(I) values. Studies on the inhibition selectivity of homologous cysteine proteases showed that 2-sulfonylpyrimidines reacted efficiently with protonated cysteine residues as found in sortase A, though surprisingly, no reaction occurred with the more nucleophilic cysteine residue from imidazolinium-thiolate dyads of cathepsin-like proteases. By means of enzymatic and chemical kinetics as well as quantum chemical calculations, it could be rationalized that the S ( N )Ar reaction between protonated cysteine residues and 2-sulfonylpyrimidines proceeds in a concerted fashion, and the mechanism involves a ternary transition state with a conjugated base. Molecular docking and enzyme inhibition at variable pH values allowed us to hypothesize that in sortase A this base is represented by the catalytic histidine 120, which could be substantiated by QM model calculation with 4-methylimidazole as histidine analog

    High-resolution longitudinal N- and O-glycoprofiling of human monocyte-to-macrophage transition.

    Full text link
    Protein glycosylation impacts the development and function of innate immune cells. The glycophenotypes and the glycan remodelling associated with the maturation of macrophages from monocytic precursor populations remain incompletely described. Herein, label-free porous graphitised carbon-liquid chromatography-tandem mass spectrometry (PGC-LC-MS/MS) was employed to profile with high resolution the N- and O-glycome associated with human monocyte-to-macrophage transition. Primary blood-derived CD14+ monocytes were differentiated ex vivo in the absence of strong anti- and proinflammatory stimuli using a conventional 7-day granulocyte-macrophage colony-stimulating factor differentiation protocol with longitudinal sampling. Morphology and protein expression monitored by light microscopy and proteomics validated the maturation process. Glycomics demonstrated that monocytes and macrophages display similar N-glycome profiles, comprising predominantly paucimannosidic (Man1-3GlcNAc2Fuc0-1, 22.1-30.8%), oligomannosidic (Man5-9GlcNAc2, 29.8-35.7%) and Îą2,3/6-sialylated complex-type N-glycans with variable core fucosylation (27.6-39.1%). Glycopeptide analysis validated conjugation of these glycans to human proteins, while quantitative proteomics monitored the glycoenzyme expression levels during macrophage differentiation. Significant interperson glycome variations were observed suggesting a considerable physiology-dependent or heritable heterogeneity of CD14+ monocytes. Only few N-glycome changes correlated with the monocyte-to-macrophage transition across donors including decreased core fucosylation and reduced expression of mannose-terminating (paucimannosidic-/oligomannosidic-type) N-glycans in macrophages, while lectin flow cytometry indicated that more dramatic cell surface glycan remodelling occurs during maturation. The less heterogeneous core 1-rich O-glycome showed a minor decrease in core 2-type O-glycosylation but otherwise remained unchanged with macrophage maturation. This high-resolution glycome map underpinning normal monocyte-to-macrophage transition, the most detailed to date, aids our understanding of the molecular makeup pertaining to two vital innate immune cell types and forms an important reference for future glycoimmunological studies

    Advances in modeling transport phenomena in material-extrusion additivemanufacturing: Coupling momentum, heat, and mass transfer

    Get PDF
    Material-extrusion (MatEx) additive manufacturing involves layer-by-layer assembly ofextruded material onto a printer bed and has found applications in rapid prototyping.Both material and machining limitations lead to poor mechanical properties of printedparts. Such problems may be addressed via an improved understanding of thecomplex transport processes and multiphysics associated with the MatEx process.Thereby, this review paper describes the current (last 5 years) state of the art modelingapproaches based on momentum, heat and mass transfer that are employed in aneffort to achieve this understanding. We describe how specific details regardingpolymer chain orientation, viscoelastic behavior and crystallization are often neglectedand demonstrate that there is a key need to couple the transport phenomena. Such acombined modeling approach can expand MatEx applicability to broader applicationspace, thus we present prospective avenues to provide more comprehensive modelingand therefore new insights into enhancing MatEx performanc

    N- and O-Glycomics from Minor Amounts of Formalin-Fixed, Paraffin-Embedded Tissue Samples

    No full text
    The availability of well-defined samples in sufficient numbers represents a major bottleneck for any biomarker related research. The utilization of preserved, archived and clinically well-described samples therefore holds a great potential to bridge this gap. This chapter describes a universal workflow for the comprehensive characterization of N- and O-glycans released from whole formalin-fixed, paraffin-embedded tissue sections, including an option for further partitioning using laser microdissection of specific tissue areas/cell populations. Glycoproteins are extracted and subsequently immobilized onto a PVDF membrane prior enzymatic release of N-glycans. Following N-glycan retrieval O-glycans are released using reductive β-elimination from the same sample spot, significantly reducing the required amount of starting material. Released and reduced glycan structures are characterized using porous graphitized carbon liquid chromatography online coupled to an electrospray ionization-ion trap mass spectrometer. This technique provides information on the relative abundances of individual glycans along with detailed structural information, including isomer differentiation and functional epitope characterization of N- and O-glycans obtained from minimal amounts of tissue down to a few thousand cells.No Full Tex

    Can Experimental Electron-Density Studies be Used as a Tool to Predict Biologically Relevant Properties of Low-Molecular Weight Enzyme Ligands?

    No full text
    The case of protease inhibitor model compounds incorporating an aziridine or epoxide ring is used to exemplify how application of experimental electron‐density techniques can be used to explain the biological properties of low‐molecular weight enzyme ligands. This is furthermore seen in the light of a comparison of crystal and enzyme environments employing QM/MM computations to elucidate to which extent the properties in the crystal can be used to predict behavior in the biological surrounding

    Flagellin glycosylation in Paenibacillus alvei CCM 2051<sup>T</sup>

    No full text
    Flagellin glycosylation impacts, in several documented cases, the functionality of bacterial flagella. The basis of flagellin glycosylation has been studied for various Gram-negative bacteria, but less is known about flagellin glycans of Gram-positive bacteria including Paenibacillus alvei, a secondary invader of honeybee colonies diseased with European foulbrood. Paenibacillus alvei CCM 2051T swarms vigorously on solidified culture medium, with swarming relying on functional flagella as evidenced by abolished biofilm formation of a non-motile P. alvei mutant defective in the flagellin protein Hag. Here, the glycobiology of the polar P. alvei flagella was investigated. Analysis on purified flagellin demonstrated that the 30-kDa Hag protein (PAV_2c01710) is modified with an O-linked trisaccharide comprised of one hexose and two N-acetyl-hexosamine residues, at three sites of glycosylation. Downstream of the hag gene on the bacterial chromosome, two open reading frames (PAV_2c01630, PAV_2c01640) encoding putative glycosyltransferases were shown to constitute a flagellin glycosylation island. Mutants defective in these genes exhibited altered migration in sodium dodecyl sulfate polyacrylamide gel electrophoresis as well as loss of extracellular flagella production and bacterial motility. This study reveals that flagellin glycosylation in P. alvei is pivotal to flagella formation and bacterial motility in vivo, and simultaneously identifies flagella glycosylation as a second protein O-glycosylation system in this bacterium, in addition to the well-investigated S-layer tyrosine O-glycosylation pathway.No Full Tex
    • …
    corecore