17 research outputs found

    Using synthetic MR images for distortion correction

    Get PDF
    Functional MRI (fMRI) data acquired using echo-planar imaging (EPI) are highly distorted by magnetic field inhomogeneities. Distortion and differences in image contrast between EPI and T1-weighted and T2-weighted (T1w/T2w) images makes their alignment a challenge. Typically, field map data are used to correct EPI distortions. Alignments achieved with field maps can vary greatly and depends on the quality of field map data. However, many public datasets lack field map data entirely. Additionally, reliable field map data is often difficult to acquire in high-motion pediatric or developmental cohorts. To address this, we developed Synth, a software package for distortion correction and cross-modal image registration that does not require field map data. Synth combines information from T1w and T2w anatomical images to construct an idealized undistorted synthetic image with similar contrast properties to EPI data. This synthetic image acts as an effective reference for individual-specific distortion correction. Using pediatric (ABCD: Adolescent Brain Cognitive Development) and adult (MSC: Midnight Scan Club; HCP: Human Connectome Project) data, we demonstrate that Synth performs comparably to field map distortion correction approaches, and often outperforms them. Field map-less distortion correction with Synth allows accurate and precise registration of fMRI data with missing or corrupted field map information

    Psilocybin desynchronizes the human brain

    Get PDF
    A single dose of psilocybin, a psychedelic that acutely causes distortions of space-time perception and ego dissolution, produces rapid and persistent therapeutic effects in human clinical trial

    Accuracy and reliability of diffusion imaging models

    Get PDF
    Diffusion imaging aims to non-invasively characterize the anatomy and integrity of the brain\u27s white matter fibers. We evaluated the accuracy and reliability of commonly used diffusion imaging methods as a function of data quantity and analysis method, using both simulations and highly sampled individual-specific data (927-1442 diffusion weighted images [DWIs] per individual). Diffusion imaging methods that allow for crossing fibers (FSL\u27s BedpostX [BPX], DSI Studio\u27s Constant Solid Angle Q-Ball Imaging [CSA-QBI], MRtrix3\u27s Constrained Spherical Deconvolution [CSD]) estimated excess fibers when insufficient data were present and/or when the data did not match the model priors. To reduce such overfitting, we developed a novel Bayesian Multi-tensor Model-selection (BaMM) method and applied it to the popular ball-and-stick model used in BedpostX within the FSL software package. BaMM was robust to overfitting and showed high reliability and the relatively best crossing-fiber accuracy with increasing amounts of diffusion data. Thus, sufficient data and an overfitting resistant analysis method enhance precision diffusion imaging. For potential clinical applications of diffusion imaging, such as neurosurgical planning and deep brain stimulation (DBS), the quantities of data required to achieve diffusion imaging reliability are lower than those needed for functional MRI
    corecore