10 research outputs found

    Cell type differences in activity of the Streptomyces bacteriophage ϕC31 integrase

    Get PDF
    Genomic integration by the Streptomyces bacteriophage ϕC31 integrase is a promising tool for non-viral gene therapy of various genetic disorders. We investigated the ϕC31 integrase recombination activity in T cell derived cell lines, primary T lymphocytes and CD34+ haematopoietic stem cells in comparison to mesenchymal stem cells and cell lines derived from lung-, liver- and cervix-tissue. In T cell lines, enhanced long-term expression above control was observed only with high amounts of integrase mRNA. Transfections of ϕC31 integrase plasmids were not capable of mediating enhanced long-term transgene expression in T cell lines. In contrast, moderate to high efficiency could be detected in human mesenchymal stem cells, human lung, liver and cervix carcinoma cell lines. Up to 100-fold higher levels of recombination product was found in ϕC31 integrase transfected A549 lung than Jurkat T cells. When the ϕC31 integrase activity was normalized to the intracellular integrase mRNA levels, a 16-fold difference was found. As one possible inhibitor of the ϕC31 integrase, we found 3- to 5-fold higher DAXX levels in Jurkat than in A549 cells, which could in addition to other yet unknown factors explain the observed discrepancy of ϕC31 integrase activity

    Immune response of healthy horses to DNA constructs formulated with a cationic lipid transfection reagent

    Get PDF
    Background Deoxyribonucleic acid (DNA) vaccines are used for experimental immunotherapy of equine melanoma. The injection of complexed linear DNA encoding interleukin (IL)-12/IL-18 induced partial tumour remission in a clinical study including 27 grey horses. To date, the detailed mechanism of the anti-tumour effect of this treatment is unknown. Results In the present study, the clinical and cellular responses of 24 healthy horses were monitored over 72 h after simultaneous intradermal and intramuscular application of equine IL-12/IL-18 DNA (complexed with a transfection reagent) or comparative substances (transfection reagent only, nonsense DNA, nonsense DNA depleted of CG). Although the strongest effect was observed in horses treated with expressing DNA, horses in all groups treated with DNA showed systemic responses. In these horses treated with DNA, rectal temperatures were elevated after treatment and serum amyloid A increased. Total leukocyte and neutrophil counts increased, while lymphocyte numbers decreased. The secretion of tumour necrosis factor alpha (TNFα) and interferon gamma (IFNγ) from peripheral mononuclear blood cells ex vivo increased after treatments with DNA, while IL-10 secretion decreased. Horses treated with DNA had significantly higher myeloid cell numbers and chemokine (C-X-C motif) ligand (CXCL)-10 expression in skin samples at the intradermal injection sites compared to horses treated with transfection reagent only, suggesting an inflammatory response to DNA treatment. In horses treated with expressing DNA, however, local CXCL-10 expression was highest and immunohistochemistry revealed more intradermal IL-12-positive cells when compared to the other treatment groups. In contrast to non-grey horses, grey horses showed fewer effects of DNA treatments on blood lymphocyte counts, TNFα secretion and myeloid cell infiltration in the dermis. Conclusion Treatment with complexed linear DNA constructs induced an inflammatory response independent of the coding sequence and of CG motif content. Expressing IL-12/IL-18 DNA locally induces expression of the downstream mediator CXCL-10. The grey horses included appeared to display an attenuated immune response to DNA treatment, although grey horses bearing melanoma responded to this treatment with moderate tumour remission in a preceding study. Whether the different immunological reactivity compared to other horses may contributes to the melanoma susceptibility of grey horses remains to be elucidated
    corecore