34 research outputs found

    Regional brain volume reductions relate to facial dysmorphology and neurocognitive function in fetal alcohol spectrum disorders

    Get PDF
    Individuals with heavy prenatal alcohol exposure can experience significant deficits in cognitive and psychosocial functioning and alterations in brain structure that persist into adulthood. In this report, data from 99 participants collected across three sites (Los Angeles and San Diego, California, and Cape Town, South Africa) were analyzed to examine relationships between brain structure, neurocognitive function, facial morphology, and maternal reports of quantities of alcohol consumption during the first trimester. Across study sites, we found highly significant volume reductions in the FASD group for all of the brain regions evaluated. After correcting for scan location, age, and total brain volume, these differences remained significant in some regions of the basal ganglia and diencephalon. In alcohol-exposed subjects, we found that smaller palpebral fissures were significantly associated with reduced volumes in the diencephalon bilaterally, that greater dysmorphology of the philtrum predicted smaller volumes in basal ganglia and diencephalic structures, and that lower IQ scores were associated with both smaller basal ganglia volumes and greater facial dysmorphology. In subjects from South Africa, we found a significant negative correlation between intracranial volume and total number of drinks per week in the first trimester. These results corroborate previous reports that prenatal alcohol exposure is particularly toxic to basal ganglia and diencephalic structures. We extend previous findings by illustrating relationships between specific measures of facial dysmorphology and the volumes of particular subcortical structures, and for the first time show that continuous measures of maternal alcohol consumption during the first trimester relates to overall brain volume reduction

    The C677T variant in MTHFR modulates associations between blood-based and cerebrospinal fluid biomarkers of neurodegeneration.

    No full text
    The C677T functional variant in the methylene-tetrahydrofolate reductase (MTHFR) gene results in reduced enzymatic activity and elevated blood levels of homocysteine. Plasma levels of apolipoprotein E (ApoE) are negatively correlated with cerebral amyloid burden, but plasma homocysteine concentrations are associated with increased amyloid-β (Aβ) deposition in the brain. Here, we sought to determine whether associations between low plasma ApoE levels and elevated in-vivo amyloid burden were modulated by carrying the C677T variant. We tested this hypothesis in a large sample of elderly participants from the Alzheimer's Disease Neuroimaging Initiative. We used general linear models to examine associations between plasma homocysteine concentrations, circulating ApoE levels, cerebrospinal fluid concentrations of Aβ, and their modulation by MTHFR and ApoE genotype. Age, sex, and dementia status were included as covariates in all analyses. Higher circulating levels of ApoE predicted increased cerebrospinal fluid concentrations of Aβ, indicating lower in-vivo burden, in C-allele carriers, but not in homozygotes at the C677T variant, who showed significant elevations in plasma homocysteine levels. This modulation by the MTHFR genotype did not remain significant after controlling for ApoE genotype. In T-homozygotes who do not carry the ApoE-ε4 allele, the relationship between low plasma ApoE levels and an increased risk of dementia is likely obscured by the presence of elevated plasma homocysteine. This report suggests the value of genotyping patients at the C677T functional variant when using plasma ApoE levels as a preclinical biomarker for Alzheimer's disease
    corecore