2,705 research outputs found

    Long-time and unitary properties of semiclassical initial value representations

    Full text link
    We numerically compare the semiclassical ``frozen Gaussian'' Herman-Kluk propagator [Chem. Phys. 91, 27 (1984)] and the ``thawed Gaussian'' propagator put forward recently by Baranger et al. [J. Phys. A 34, 7227 (2001)] by studying the quantum dynamics in some nonlinear one-dimensional potentials. The reasons for the lack of long time accuracy and norm conservation in the latter method are uncovered. We amend the thawed Gaussian propagator with a global harmonic approximation for the stability of the trajectories and demonstrate that this revised propagator is a true alternative to the Herman-Kluk propagator with similar accuracy.Comment: 14 pages, 4 figures, corrected typos and figure 1 (d

    Q‐sort methodology: Bridging the divide between qualitative and quantitative. An introduction to an innovative method for psychotherapy research

    Get PDF
    Q‐methodology offers unique opportunities for counselling and psychotherapy researchers and clinicians. It is an innovative technique capable of bridging the divide between clinical knowledge and the quantitative systematisation of it. It was initially developed by Stephenson as a data collection and data analytic method to empirically study human subjectivity. It was then extended by the British School to study shared viewpoints, thereby adopting a multi‐participant design and a highly unusual form of qualitative analysis. Finally, it was adapted by the Californian School for use as a standardised observer‐rated assessment tool. Its attractiveness stems from its aptitude to produce holistic data as it collects both quantitative and narrative data. This paper will provide an introduction to Q‐statistics and Q‐methodology (person‐centred) by contrasting it to R‐statistics and R‐methodology (variable‐centred). It will then provide an overview of the three schools of Q‐methodology and their various merits demonstrated with an example

    Quantum dynamics of long-range interacting systems using the positive-P and gauge-P representations

    Get PDF
    We provide the necessary framework for carrying out stochastic positive-P and gauge-P simulations of bosonic systems with long range interactions. In these approaches, the quantum evolution is sampled by trajectories in phase space, allowing calculation of correlations without truncation of the Hilbert space or other approximations to the quantum state. The main drawback is that the simulation time is limited by noise arising from interactions. We show that the long-range character of these interactions does not further increase the limitations of these methods, in contrast to the situation for alternatives such as the density matrix renormalisation group. Furthermore, stochastic gauge techniques can also successfully extend simulation times in the long-range-interaction case, by making using of parameters that affect the noise properties of trajectories, without affecting physical observables. We derive essential results that significantly aid the use of these methods: estimates of the available simulation time, optimized stochastic gauges, a general form of the characteristic stochastic variance and adaptations for very large systems. Testing the performance of particular drift and diffusion gauges for nonlocal interactions, we find that, for small to medium systems, drift gauges are beneficial, whereas for sufficiently large systems, it is optimal to use only a diffusion gauge. The methods are illustrated with direct numerical simulations of interaction quenches in extended Bose-Hubbard lattice systems and the excitation of Rydberg states in a Bose-Einstein condensate, also without the need for the typical frozen gas approximation. We demonstrate that gauges can indeed lengthen the useful simulation time.Comment: 19 pages, 11 appendix, 3 figure

    Many-body theory of excitation dynamics in an ultracold Rydberg gas

    Full text link
    We develop a theoretical approach for the dynamics of Rydberg excitations in ultracold gases, with a realistically large number of atoms. We rely on the reduction of the single-atom Bloch equations to rate equations, which is possible under various experimentally relevant conditions. Here, we explicitly refer to a two-step excitation-scheme. We discuss the conditions under which our approach is valid by comparing the results with the solution of the exact quantum master equation for two interacting atoms. Concerning the emergence of an excitation blockade in a Rydberg gas, our results are in qualitative agreement with experiment. Possible sources of quantitative discrepancy are carefully examined. Based on the two-step excitation scheme, we predict the occurrence of an antiblockade effect and propose possible ways to detect this excitation enhancement experimentally in an optical lattice as well as in the gas phase.Comment: 12 pages, 8 figure

    Correlations of Rydberg excitations in an ultra-cold gas after an echo sequence

    Get PDF
    We show that Rydberg states in an ultra-cold gas can be excited with strongly preferred nearest-neighbor distance if densities are well below saturation. The scheme makes use of an echo sequence in which the first half of a laser pulse excites Rydberg states while the second half returns atoms to the ground state, as in the experiment of Raitzsch et al. [Phys. Rev. Lett. 100 (2008) 013002]. Near to the end of the echo sequence, almost any remaining Rydberg atom is separated from its next-neighbor Rydberg atom by a distance slightly larger than the instantaneous blockade radius half-way through the pulse. These correlations lead to large deviations of the atom counting statistics from a Poissonian distribution. Our results are based on the exact quantum evolution of samples with small numbers of atoms. We finally demonstrate the utility of the omega-expansion for the approximate description of correlation dynamics through an echo sequence.Comment: 8 pages, 6 figure
    • 

    corecore