29 research outputs found

    Genome-Wide Hypomethylation in Head and Neck Cancer Is More Pronounced in HPV-Negative Tumors and Is Associated with Genomic Instability

    Get PDF
    Loss of genome-wide methylation is a common feature of cancer, and the degree of hypomethylation has been correlated with genomic instability. Global methylation of repetitive elements possibly arose as a defense mechanism against parasitic DNA elements, including retrotransposons and viral pathogens. Given the alterations of global methylation in both viral infection and cancer, we examined genome-wide methylation levels in head and neck squamous cell carcinoma (HNSCC), a cancer causally associated with human papilloma virus (HPV). We assayed global hypomethylation levels in 26 HNSCC samples, compared with their matched normal adjacent tissue, using Pyrosequencing-based methylation assays for LINE repeats. In addition, we examined cell lines derived from a variety of solid tumors for LINE and SINE (Alu) repeats. The degree of LINE and Alu hypomethylation varied among different cancer cell lines. There was only moderate correlation between LINE and Alu methylation levels, with the range of variation in methylation levels being greater for the LINE elements. LINE hypomethylation was more pronounced in HPV-negative than in HPV-positive tumors. Moreover, genomic instability, as measured by genome-wide loss-of-heterozygosity (LOH) single nucleotide polymorphism (SNP) analysis, was greater in HNSCC samples with more pronounced LINE hypomethylation. Global hypomethylation was variable in HNSCC. Its correlation with both HPV status and degree of LOH as a surrogate for genomic instability may reflect alternative oncogenic pathways in HPV-positive versus HPV-negative tumors

    Transcription factor AP-1 in esophageal squamous cell carcinoma: Alterations in activity and expression during Human Papillomavirus infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Esophageal squamous cell carcinoma (ESCC) is a leading cause of cancer-related deaths in Jammu and Kashmir (J&K) region of India. A substantial proportion of esophageal carcinoma is associated with infection of high-risk HPV type 16 and HPV18, the oncogenic expression of which is controlled by host cell transcription factor Activator Protein-1 (AP-1). We, therefore, have investigated the role of DNA binding and expression pattern of AP-1 in esophageal cancer with or without HPV infection.</p> <p>Methods</p> <p>Seventy five histopathologically-confirmed esophageal cancer and an equal number of corresponding adjacent normal tissue biopsies from Kashmir were analyzed for HPV infection, DNA binding activity and expression of AP-1 family of proteins by PCR, gel shift assay and immunoblotting respectively.</p> <p>Results</p> <p>A high DNA binding activity and elevated expression of AP-1 proteins were observed in esophageal cancer, which differed between HPV positive (19%) and HPV negative (81%) carcinomas. While JunB, c-Fos and Fra-1 were the major contributors to AP-1 binding activity in HPV negative cases, Fra-1 was completely absent in HPV16 positive cancers. Comparison of AP-1 family proteins demonstrated high expression of JunD and c-Fos in HPV positive tumors, but interestingly, Fra-1 expression was extremely low or nil in these tumor tissues.</p> <p>Conclusion</p> <p>Differential AP-1 binding activity and expression of its specific proteins between HPV - positive and HPV - negative cases indicate that AP-1 may play an important role during HPV-induced esophageal carcinogenesis.</p

    Inverse Association between Methylation of Human Papillomavirus Type 16 DNA and Risk of Cervical Intraepithelial Neoplasia Grades 2 or 3

    Get PDF
    The clinical relevance of human papillomavirus type 16 (HPV16) DNA methylation has not been well documented, although its role in modulation of viral transcription is recognized.Study subjects were 211 women attending Planned Parenthood clinics in Western Washington for routine Papanicolaou screening who were HPV16 positive at the screening and/or subsequent colposcopy visit. Methylation of 11 CpG dinucleotides in the 3' end of the long control region of the HPV16 genome was examined by sequencing the cloned polymerase chain reaction products. The association between risk of CIN2/3 and degree of CpG methylation was estimated using a logistic regression model.CIN2/3 was histologically confirmed in 94 (44.5%) of 211 HPV16 positive women. The likelihood of being diagnosed as CIN2/3 increased significantly with decreasing numbers of methylated CpGs (meCpGs) in the 3' end of the long control region (P(for trend) = 0.003). After adjusting for HPV16 variants, number of HPV16-positive visits, current smoking status and lifetime number of male sex partners, the odds ratio for the association of CIN2/3 with ≥4 meCpGs was 0.31 (95% confidence interval, 0.12-0.79). The proportion of ≥4 meCpGs decreased appreciably as the severity of the cervical lesion increased (P(for trend) = 0.001). The inverse association remained similar when CIN3 was used as the clinical endpoint. Although not statistically significant, the ≥4 meCpGs-related risk reduction was more substantial among current, as compared to noncurrent, smokers.Results suggest that degree of the viral genome methylation is related to the outcome of an HPV16 cervical infection

    Alterations in AP-1 and AP-1 regulatory genes during HPV-induced carcinogenesis

    No full text
    Background: Previous studies demonstrated a functional involvement of the AP-1 transcription factor in HPV-induced cervical carcinogenesis. Here, we aimed to obtain further insight in expression alterations of AP-1 family members during HPV-mediated transformation and their relationship to potential regulatory (Notch1, Net) and target (CADM1) genes
    corecore