246 research outputs found

    Galectin-9 Regulates Monosodium Urate Crystal-Induced Gouty Inflammation Through the Modulation of Treg/Th17 Ratio

    Get PDF
    Gout is caused by depositing monosodium urate (MSU) crystals within the articular area. The infiltration of neutrophils and monocytes drives the initial inflammatory response followed by lymphocytes. Interestingly, emerging evidence supports the view that in situ imbalance of T helper 17 cells (Th17)/regulatory T cells (Treg) impacts the subsequent damage to target tissues. Galectin-9 (Gal-9) is a modulator of innate and adaptive immunity with both pro- and anti-inflammatory functions, dependent upon its expression and cellular location. However, the specific cellular and molecular mechanisms by which Gal-9 modulates the inflammatory response in the onset and progression of gouty arthritis has yet to be elucidated. In this study, we sought to comprehensively characterise the functional role of exogenous Gal-9 in an in vivo model of MSU crystal-induced gouty inflammation by monitoring in situ neutrophils, monocytes and Th17/Treg recruited phenotypes and related cyto-chemokines profile. Treatment with Gal-9 revealed a dose-dependent reduction in joint inflammation scores, knee joint oedema and expression of different pro-inflammatory cyto-chemokines. Furthermore, flow cytometry analysis highlighted a significant modulation of infiltrating inflammatory monocytes (CD11b+/CD115+/LY6-Chi) and Th17 (CD4+/IL-17+)/Treg (CD4+/CD25+/FOXP-3+) cells following Gal-9 treatment. Collectively the results presented in this study indicate that the administration of Gal-9 could provide a new therapeutic strategy for preventing tissue damage in gouty arthritic inflammation and, possibly, in other inflammatory-based diseases

    Skeletal muscle overexpression of sAnk1.5 in transgenic mice does not predispose to type 2 diabetes

    Get PDF
    Genome-wide association studies (GWAS) and cis-expression quantitative trait locus (cis-eQTL) analyses indicated an association of the rs508419 single nucleotide polymorphism (SNP) with type 2 diabetes (T2D). rs508419 is localized in the muscle-specific internal promoter (P2) of the ANK1 gene, which drives the expression of the sAnk1.5 isoform. Functional studies showed that the rs508419 C/C variant results in increased transcriptional activity of the P2 promoter, leading to higher levels of sAnk1.5 mRNA and protein in skeletal muscle biopsies of individuals carrying the C/C genotype. To investigate whether sAnk1.5 overexpression in skeletal muscle might predispose to T2D development, we generated transgenic mice (TgsAnk1.5/+) in which the sAnk1.5 coding sequence was selectively overexpressed in skeletal muscle tissue. TgsAnk1.5/+ mice expressed up to 50% as much sAnk1.5 protein as wild-type (WT) muscles, mirroring the difference reported between individuals with the C/C or T/T genotype at rs508419. However, fasting glucose levels, glucose tolerance, insulin levels and insulin response in TgsAnk1.5/+ mice did not differ from those of age-matched WT mice monitored over a 12-month period. Even when fed a high-fat diet, TgsAnk1.5/+ mice only presented increased caloric intake, but glucose disposal, insulin tolerance and weight gain were comparable to those of WT mice fed a similar diet. Altogether, these data indicate that sAnk1.5 overexpression in skeletal muscle does not predispose mice to T2D susceptibility

    Health professionals and students’ experiences of reflective writing in learning: A qualitative meta-synthesis

    Get PDF
    Background: Reflective writing provides an opportunity for health professionals and students to learn from their mistakes, successes, anxieties, and worries that otherwise would remain disjointed and worthless. This systematic review addresses the following question: “What are the experiences of health professionals and students in applying reflective writing during their education and training?” Methods: We performed a systematic review and meta-synthesis of qualitative studies. Our search comprised six electronic databases: MedLine, Embase, Cinahl, PsycINFO, Eric, and Scopus. Our initial search produced 1237 titles, excluding duplicates that we removed. After title and abstract screening, 17 articles met the inclusion criteria. We identified descriptive themes and the conceptual elements explaining the health professionals’ and students’ experience using reflective writing during their academic and in-service training by performing a meta-synthesis. Results: We identified four main categories (and related sub-categories) through the meta-synthesis: reflection and reflexivity, accomplishing learning potential, building a philosophical and empathic approach, and identifying reflective writing feasibility. We placed the main categories into an interpretative model which explains the users’ experiences of reflective writing during their education and training. Reflective writing triggered reflection and reflexivity that allows, on the one hand, skills development, professional growth, and the ability to act on change; on the other hand, the acquisition of empathic attitudes and sensitivity towards one’s own and others’ emotions. Perceived barriers and impeding factors and facilitating ones, like timing and strategies for using reflective writing, were also identified. Conclusions: The use of this learning methodology is crucial today because of the recognition of the increasing complexity of healthcare contexts requiring professionals to learn advanced skills beyond their clinical ones. Implementing reflective writing-based courses and training in university curricula and clinical contexts can benefit human and professional development

    Consensus statements on the information to deliver after a febrile seizure

    Get PDF
    Febrile seizures (FS) are usually self-limiting and cause no morbidity. Nevertheless they represent very traumatic events for families. There is a need to identify key messages that reassure carers and help to prevent inappropriate, anxiety-driven behaviors associated with “fever phobia.” No recommendations have been proposed to date regarding the content of such messages. Using a Delphi process, we have established a consensus regarding the information to be shared with families following a FS. Twenty physicians (child neurologists and pediatricians) from five European countries participated in a three-step Delphi process between May 2018 and October 2019. In the first step, each expert was asked to give 10 to 15 free statements about FS. In the second and third steps, statements were scored and selected according to the expert ranking of importance. A list of key messages for families has emerged from this process, which offer reassurance about FS based on epidemiology, underlying mechanisms, and the emergency management of FS should they recur. Interestingly, there was a high level of agreement between child neurologists and general pediatricians. Conclusion: We propose key messages to be communicated with families in the post-FS clinic setting.What is Known:• Febrile seizures (FS) are traumatic events for families.• No guidelines exist on what information to share with parents following a FS.What is New:• A Delphi process involving child neurologists and pediatricians provides consensual statement about information to deliver after a febrile seizure.• We propose key messages to be communicated with families in the post-FS clinic setting

    Opposing effects of D-aspartic acid and nitric oxide on tuning of testosterone production in mallard testis during the reproductive cycle

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>D-Aspartic acid (D-Asp) and nitric oxide (NO) play an important role in tuning testosterone production in the gonads of male vertebrates. In particular, D-Asp promotes either the synthesis or the release of testosterone, whereas NO inhibits it. In this study, we have investigated for the first time in birds the putative effects of D-Asp and NO on testicular testosterone production in relation to two phases of the reproductive cycle of the adult captive wild-strain mallard (Anas platyrhynchos) drake. It is a typical seasonal breeder and its cycle consists of a short reproductive period (RP) in the spring (April-May) and a non reproductive period (NRP) in the summer (July), a time when the gonads are quiescent. The presence and the localization of D-Asp and NO in the testis and the trends of D-Asp, NO and testosterone levels were assessed during the main phases of the bird's reproductive cycle. Furthermore, in vitro experiments revealed the direct effect of exogenously administered D-Asp and NO on testosterone steroidogenesis.</p> <p>Methods</p> <p>By using immunohistochemical (IHC) techniques, we studied the presence and the distributional pattern of D-Asp and NO in the testes of RP and NRP drakes. D-Asp levels were evaluated by an enzymatic method, whereas NO content, via nitrite, was assessed using biochemical measurements. Finally, immunoenzymatic techniques determined testicular testosterone levels.</p> <p>Results</p> <p>IHC analyses revealed the presence of D-Asp and NO in Leydig cells. The distributional pattern of both molecules was in some way correlated to the steroidogenic pathway, which is involved in autocrine testosterone production. Indeed, whereas NO was present only during the NRP, D-Asp was almost exclusively present during the RP. Consistently, the high testosterone testicular content occurring during RP was coupled to a high D-Asp level and a low NO content in the gonad. By contrast, in sexually inactive drakes (NRP), the low testosterone content in the gonad was coupled to a low D-Asp content and to a relatively high NO level. Consequently, to determine the exogenous effects of the two amino acids on testosterone synthesis, we carried out in vitro experiments using testis sections deriving from both the RP and NRP. When testis slices were incubated for 60 or 120 min with D-Asp, testosterone was enhanced, whereas in the presence of L-Arg, a precursor of NO, it was inhibited.</p> <p>Conclusion</p> <p>Our results provide new insights into the involvement of D-Asp and NO in testicular testosterone production in the adult captive wild-strain mallard drake. The localization of these two molecules in the Leydig cells in different periods of the reproductive cycle demonstrates that they play a potential role in regulating local testosterone production.</p
    • …
    corecore