734 research outputs found
Nano-building block based-hybrid organic–inorganic copolymers with self-healing properties
New dynamic materials, that can repair themselves after strong damage, have been designed by hybridization of polymers with structurally well-defined nanobuilding units. The controlled design of cross-linked poly(n-butyl acrylate) (pBuA) has been performed by introducing a very low amount of a specific tin oxo-cluster. Sacrificial domains with non-covalent interactions (i.e. ionic bonds) developed at the hybrid interface play a double role. Such interactions are strong enough to cross-link the polymer, which consequently exhibits rubber-like elasticity behavior and labile enough to enable, after severe mechanical damage, dynamic bond recombination leading to an efficient healing process at room temperature. In agreement with the nature of the reversible links at the hybrid interface, the healing process can speed up considerably with temperature. 1H and 119Sn PFG NMR has been used to evidence the dynamic nature of these peculiar cross-linking nodes
Identification of the major tRNAPhe binding domain in the tetrameric structure of cytoplasmic phenylalanyl-tRNA synthetase from baker's yeast
AbstractNative cytoplasmic phenylalanyl-tRNA synthetase from baker's yeast is a tetramer of the α2β2 type. On mild tryptic cleavage it gives rise to a modified ∡2β′2 form that has lost the tRNAPhe binding capacity but is still able to activate phenylalanine. In this paper are presented data concerning peptides released by this limited proteolytic conversion as well as those arising from exhaustive tryptic digestion of the truncated β′ subunit. Each purified peptide was unambiguously assigned to a unique stretch of the β subunit amino acid sequence that was recently determined via gene cloning and DNA sequencing. Together with earlier results from affinity labelling studies the present data show that the Lys 172—Ile 173 bond is the unique target of trypsin under mild conditions and that the N-terminal domain of each β subunit (residues 1–172) contains the major tRNAPhe binding sites
Hodge polynomials of some moduli spaces of Coherent Systems
When , we study the coherent systems that come from a BGN extension in
which the quotient bundle is strictly semistable. In this case we describe a
stratification of the moduli space of coherent systems. We also describe the
strata as complements of determinantal varieties and we prove that these are
irreducible and smooth. These descriptions allow us to compute the Hodge
polynomials of this moduli space in some cases. In particular, we give explicit
computations for the cases in which and is even,
obtaining from them the usual Poincar\'e polynomials.Comment: Formerly entitled: "A stratification of some moduli spaces of
coherent systems on algebraic curves and their Hodge--Poincar\'e
polynomials". The paper has been substantially shorten. Theorem 8.20 has been
revised and corrected. Final version accepted for publication in
International Journal of Mathematics. arXiv admin note: text overlap with
arXiv:math/0407523 by other author
L\u27éclair : opéra comique en trois actes
Quand de la nuit l\u27épais nuage convrait mes yeuxde son bandeau tu me montrais après l\u27orage l\u27éclat prochaind\u27un jour nouveau tu me disais dans la souffrance qui vient encornous secourir c\u27est l\u27espérance en l\u27avenir sans espérance mieux vant mourir c\u27est l\u27espérance en l\u27avenir sans espérance mieux vaut mourir.
Grâce à tes soins quand ma paupière en se rouvranta pu te voir j\u27ai condamné ta vie entière a la douleurau désespoiret cependant à la souffrance le dernier bienqu\u27on doit ravir c\u27est l\u27espérance en l\u27avenir sans espérance mieux vaut mourirc\u27est l\u27espérance en l\u27avenir sans espérance mieux vant mourir
Characterization of nanomedicines’ surface coverage using molecular probes and capillary electrophoresis
International audienceA faithful characterization of nanomedicine (NM) is needed for a better understanding of their in vivo outcomes. Size and surface charge are studied with well-established methods. However, other relevant parameters for the understanding of NM behavior in vivo remain largely inaccessible. For instance, the reactive surface of nanomedicines, which are often grafted with macromolecules to decrease their recognition by the immune system, is excluded from a systematic characterization. Yet, it is known that a subtle modification of NMs' surface characteristics (grafting density, molecular architecture and conformation of macromolecules) is at the root of major changes in the presence of biological components. In this work, a method that investigates the steric hindrance properties of the NMs’ surface coverage based on its capacity to exclude or allow adsorption of well-defined proteins was developed based on capillary electrophoresis. A series of proteins with different molecular weights (MW) were used as molecular probes to screen their adsorption behavior on nanoparticles bearing different molecular architectures at their surface. This novel strategy evaluating to some degree a functionality of NMs can bring additional information about their shell property and might allow for a better perception of their behavior in the presence of biological components. The developed method could discriminate nanoparticles with a high surface coverage excluding high MW proteins from nanoparticles with a low surface coverage that allowed high MW proteins to adsorb on their surface. The method has the potential for further standardization and automation for a routine use. It can be applied in quality control of NMs and to investigate interactions between proteins and NM in different situations
Binocular vision and foraging in ducks, geese and swans (Anatidae)
Wide variation in visual field configuration across avian species is hypothesized to be driven primarily by foraging ecology and predator detection. While some studies of selected taxa have identified relationships between foraging ecology and binocular field characteristics in particular species, few have accounted for the relevance of shared ancestry. We conducted a large-scale, comparative analysis across 39 Anatidae species to investigate the relationship between the foraging ecology traits of diet or behaviour and binocular field parameters, while controlling for phylogeny. We used phylogenetic models to examine correlations between traits and binocular field characteristics, using unidimensional and morphometric approaches. We found that foraging behaviour influenced three parameters of binocular field size: maximum binocular field width, vertical binocular field extent, and angular separation between the eye-bill projection and the direction of maximum binocular field width. Foraging behaviour and body mass each influenced two descriptors of binocular field shape. Phylogenetic relatedness had minimal influence on binocular field size and shape, apart from vertical binocular field extent. Binocular field differences are associated with specific foraging behaviours, as related to the perceptual challenges of obtaining different food items from aquatic and terrestrial environments
Contribution of the d-Serine-Dependent Pathway to the Cellular Mechanisms Underlying Cognitive Aging
An association between age-related memory impairments and changes in functional plasticity in the aging brain has been under intense study within the last decade. In this article, we show that an impaired activation of the strychnine-insensitive glycine site of N-methyl-d-aspartate receptors (NMDA-R) by its agonist d-serine contributes to deficits of synaptic plasticity in the hippocampus of memory-impaired aged rats. Supplementation with exogenous d-serine prevents the age-related deficits of isolated NMDA-R-dependent synaptic potentials as well as those of theta-burst-induced long-term potentiation and synaptic depotentiation. Endogenous levels of d-serine are reduced in the hippocampus with aging, that correlates with a weaker expression of serine racemase synthesizing the amino acid. On the contrary, the affinity of d-serine binding to NMDA-R is not affected by aging. These results point to a critical role for the d-serine-dependent pathway in the functional alterations of the brain underlying memory impairment and provide key information in the search for new therapeutic strategies for the treatment of memory deficits in the elderly
- …