27 research outputs found

    Maturation-Dependent Licensing of Naive T Cells for Rapid TNF Production

    Get PDF
    The peripheral naïve T cell pool is comprised of a heterogeneous population of cells at various stages of development, which is a process that begins in the thymus and is completed after a post-thymic maturation phase in the periphery. One hallmark of naïve T cells in secondary lymphoid organs is their unique ability to produce TNF rapidly after activation and prior to acquiring other effector functions. To determine how maturation influences the licensing of naïve T cells to produce TNF, we compared cytokine profiles of CD4+ and CD8+ single positive (SP) thymocytes, recent thymic emigrants (RTEs) and mature-naïve (MN) T cells during TCR activation. SP thymocytes exhibited a poor ability to produce TNF when compared to splenic T cells despite expressing similar TCR levels and possessing comparable activation kinetics (upregulation of CD25 and CD69). Provision of optimal antigen presenting cells from the spleen did not fully enable SP thymocytes to produce TNF, suggesting an intrinsic defect in their ability to produce TNF efficiently. Using a thymocyte adoptive transfer model, we demonstrate that the ability of T cells to produce TNF increases progressively with time in the periphery as a function of their maturation state. RTEs that were identified in NG-BAC transgenic mice by the expression of GFP showed a significantly enhanced ability to express TNF relative to SP thymocytes but not to the extent of fully MN T cells. Together, these findings suggest that TNF expression by naïve T cells is regulated via a gradual licensing process that requires functional maturation in peripheral lymphoid organs

    The human stratum corneum layer: An effective barrier against dermal uptake of different forms of topically applied micronised titanium dioxide

    No full text
    Electron microscopy visualisation and light microscopic investigations of three different application forms of titanium dioxide proved that neither surface characteristics, particle size nor shape of the micronised titanium dioxide result in any dermal absorption of this substance: Micronised titanium dioxide is solely deposited on the outermost surface of the stratum corneum and cannot be detected in deeper stratum corneum layers, the human epidermis and dermis

    The outermost stratum corneum layer is an effective barrier against dermal uptake of topically applied micronized titanium dioxide

    No full text
    In order to help clarify the controversially discussed dermal uptake properties of micronized titanium dioxide (TiO), we conducted extensive in vitro dermal absorption studies with 'Franz-type' diffusion cells on excised porcine skin. After biopsies and chemical fixation, the overall localization of TiO in the skin was analyzed by means of transmission electron microscopy (TEM). The lateral and vertical distribution of TiO within the stratum corneum (SC) was investigated by tape stripping and subsequent scanning electron microscopy (SEM) in combination with energy dispersive X-ray analysis (EDXA). TiO was found exclusively on the outermost SC layer. The surface deposit, as displayed by TEM, featured clearly distinguishable agglomerates as well as single particles with a characteristic cubic shape and a primary particle size of about 20-50 nm. Concurrently, SEM/EDXA micrographs first showed an even distribution of TiO on the skin surface. After 10-fold stripping, however, TiO was found to be localized only in the furrows and not on the partially removed ridges of the skin surface. SEM/EDXA micrographs of the adhesive tape strips revealed a characteristic pattern of stripped material and free regions. This pattern was an imprint of the skin's topography. Hence, tape stripping initially removed TiO and SC layers only from the ridges and not from the deeper furrows. Continued stripping increasingly yielded material from the deeper contours of the SC surface. TiO was found only in traces in the upper part of the follicle without any evidence of uptake into the follicular epithelium. This indicates that there is not any relevant penetration via the follicular route. We conclude that due to the microtopography of the skin, the strip number normally does not reflect the SC layer number. Accordingly, tape stripping results should always be interpreted with care, especially in the case of topically applied particles, as even higher numbers of subsequent strips may still sample material from the outermost SC layer of the deeper furrows, which could be interpreted falsely as penetrated material. Our results clearly demonstrate that TiO homogeneously and completely covers the outermost SC layer. It is neither delivered to the SC nor to the underlying skin layers when applied topically to porcine skin in vitro in the cosmetic vehicle used here. These findings underscore the safety of this micronized inorganic UV filter

    Distribution of sunscreens on skin

    No full text
    The effectiveness of sunscreens was originally achieved by incorporation of soluble organic UV absorbers such as cinnamates and others into cosmetic formulations. Determinations of the sun protection factor (SPF) of emulsions containing different organic UV absorbers clearly indicate that the efficacy depends on the absorption characteristics of each single UV filter substance. Nowadays, micronised pigments such as titanium dioxide or zinc oxide have also been found to be protective against harmful UV rays. Our investigations using optical and electron microscopy proved that neither surface characteristics, particle size nor shape of the micronised pigments result in any dermal absorption of this substance. Micronised titanium dioxide is solely deposited on the outermost surface of the stratum corneum and cannot be detected in deeper stratum corneum layers, the human epidermis and dermis

    The TCR ligand-inducible expression of CD73 marks γδ lineage commitment and a metastable intermediate in effector specification

    No full text
    Numerous studies indicate that γδ T cell receptor (γδTCR) expression alone does not reliably mark commitment of early thymic progenitors to the γδ fate. This raises the possibility that the γδTCR is unable to intrinsically specify fate and instead requires additional environmental factors, including TCR–ligand engagement. We use single cell progenitor assays to reveal that ligand acts instructionally to direct adoption of the γδ fate. Moreover, we identify CD73 as a TCR ligand-induced cell surface protein that distinguishes γδTCR-expressing CD4(−)CD8(−) progenitors that have committed to the γδ fate from those that have not yet done so. Indeed, unlike CD73(−) γδTCR(+) progenitors, which largely adopt the αβ fate upon separation from the intrathymic selecting environment, those that express CD73 remain CD4(−)CD8(−) and committed to the γδ fate. CD73 is expressed by >90% of peripheral γδ cells, suggesting this is a common occurrence during development. Moreover, CD73 induction appears to mark a metastable intermediate stage before acquisition of effector function, suggesting that γδ lineage and effector fate are specified sequentially. These findings have important implications for the role of ligand in γδ lineage commitment and its relationship to the specification of effector fate
    corecore