10 research outputs found

    Evolutionary divergence of photoprotection in the green algal lineage: a plant-like violaxanthin de-epoxidase enzyme activates the xanthophyll cycle in the green alga Chlorella vulgaris modulating photoprotection

    Get PDF
    The xanthophyll cycle is the metabolic process by which the carotenoid violaxanthin is de-epoxidated to zeaxanthin, a xanthophyll with a crucial photoprotective role in higher plants and mosses. The role of zeaxanthin is still unclear in green algae, and a peculiar violaxanthin de-epoxidating enzyme was found in the model organism Chlamydomonas reinhardtii. Here, we investigated the molecular details and functions of the xanthophyll cycle in the case of Chlorella vulgaris, one of the green algae most considered for industrial cultivation, where resistance to high light stress is a prerequisite for sustainable biomass production. Identification of the violaxanthin de-epoxidase enzyme in C. vulgaris was performed by genome mining and in vitro analysis of the catalytic activity of the gene product identified. The photoprotective role of zeaxanthin was then investigated in vivo and in isolated pigment-binding complexes. The results obtained demonstrate the functioning, even though with a different pH sensitivity, of a plant-like violaxanthin de-epoxidase enzyme in C. vulgaris. Differently from C. reinhardtii, zeaxanthin accumulation in C. vulgaris was found to be crucial for photoprotective quenching of excitation energy harvested by both photosystem I and II. These findings demonstrate an evolutionary divergence of photoprotective mechanisms among Chlorophyta

    The Role of Acidic Residues in the C Terminal Tail of the LHCSR3 Protein of Chlamydomonas reinhardtii in Non-Photochemical Quenching

    Get PDF
    Light-harvesting complex stress-related (LHCSR) proteins in green algae are essential for photoprotection via a non-photochemical quenching (NPQ), playing the dual roles of pH sensing and dissipation of chlorophylls excited-state energy. pH sensing occurs via a protonation of acidic residues located mainly on its lumen-exposed C-terminus. Here, we combine in vivo and in vitro studies to ascertain the role in NPQ of these protonatable C-terminal residues in LHCSR3 from Chlamydomonas reinhardtii. In vivo studies show that four of the residues, D239, D240, E242, and D244, are not involved in NPQ. In vitro experiments on an LHCSR3 chimeric protein, obtained by a substitution of the C terminal with that of another LHC protein lacking acidic residues, show a reduction of NPQ compared to the wild type but preserve the quenching mechanism involving a charge transfer from carotenoids to chlorophylls. NPQ in LHCSR3 is thus a complex mechanism, composed of multiple contributions triggered by different acidic residues

    Molecular Mechanisms of Nonphotochemical Quenching in the LHCSR3 Protein of Chlamydomonas reinhardtii

    Get PDF
    Photosynthetic organisms possess photoprotection mechanisms from excess light conditions. The fastest response consists in the pH-triggered activation of a dissipation channel of the energy absorbed by the chlorophylls into heat, called nonphotochemical quenching. In green algae, the pigment binding complex LHCSR3 acts both as a chlorophyll quencher and as a pH detector. In this work, we study the quenching of the LHCSR3 protein in vitro considering two different protein aggregation states and two pH conditions using a combination of picosecond time-resolved photoluminescence and femtosecond transient absorption in the visible and NIR spectral regions. We find that the mechanisms at the basis of LHCSR3 quenching activity are always active, even at pH 7.5 and low aggregation. However, quenching efficiency is strongly enhanced by pH and by aggregation conditions. In particular, we find that electron transfer from carotenoids to chlorophylls is enhanced at low pH, while quenching mediated by protein-protein interactions is increased by going to a high aggregation state. We also observe a weak pH-dependent energy transfer from the chlorophylls to the S1 state of carotenoids

    LHCSR3 is a nonphotochemical quencher of both photosystems in Chlamydomonas reinhardtii

    No full text
    Photosynthetic organisms prevent oxidative stress from light energy absorbed in excess through several photoprotective mechanisms. A major component is thermal dissipation of chlorophyll singlet excited states and is called nonphotochemical quenching (NPQ). NPQ is catalyzed in green algae by protein subunits called LHCSRs (Light Harvesting Complex Stress Related), homologous to the Light Harvesting Complexes (LHC), constituting the antenna system of both photosystem I (PSI) and PSII. We investigated the role of LHCSR1 and LHCSR3 in NPQ activation to verify whether these proteins are involved in thermal dissipation of PSI excitation energy, in addition to their well-known effect on PSII. To this aim, we measured the fluorescence emitted at 77 K by whole cells in a quenched or unquenched state, using green fluorescence protein as the internal standard. We show that NPQ activation by high light treatment in Chlamydomonas reinhardtii leads to energy quenching in both PSI and PSII antenna systems. By analyzing quenching properties of mutants affected on the expression of LHCSR1 or LHCSR3 gene products and/or state 1-state 2 transitions or zeaxanthin accumulation, namely, npq4, stt7, stt7 npq4, npq4 lhcsr1, lhcsr3-complemented npq4 lhcsr1 and npq1, we showed that PSI undergoes NPQ through quenching of the associated LHCII antenna. This quenching event is fast-reversible on switching the light off, is mainly related to LHCSR3 activity, and is dependent on thylakoid luminal pH. Moreover, PSI quenching could also be observed in the absence of zeaxanthin or STT7 kinase activity

    Photosystem II antenna complexes CP26 and CP29 are essential for non-photochemical quenching in Chlamydomonas reinhardtii.

    No full text
    Photosystems must balance between light harvesting to fuel the photosynthetic process for CO2 fixation, and mitigating the risk of photodamage due to absorption of light energy in excess. Eukaryotic photosynthetic organisms evolved an array of pigment binding proteins called Light Harvesting Complexes (LHC) constituting the external antenna system in the Photosystems, where both light harvesting and activation of photoprotective mechanisms occur. In this work, the balancing role of CP29 and CP26 Photosystem II antenna subunits was investigated in Chlamydomonas reinhardtii using CRISPR-Cas9 technology to obtain single and double mutants depleted of monomeric antennas. Absence of CP26 and CP29 impaired both photosynthetic efficiency and photoprotection: excitation energy transfer from external antenna to reaction centre was reduced and state transitions were completely impaired. Moreover, differently from higher plants, Photosystem II monomeric antenna proteins resulted to be essential for photoprotective thermal dissipation of excitation energy by Non-photochemical quenching (NPQ)

    Agenesis: pilot case report by 2.9 mm implant

    No full text
    The agenesis of the upper lateral incisor is one of the most frequent aesthetic-functional problems in dentistry. The reported case concerns a 49 years old male patient with bilateral agenesis of teeth 1.2-2.2 and a root stump of tooth 5.2 temporarily rehabilitated through a Maryland bridge. Without orthodontic treatment, the only solution for implant-prosthetic rehabilitation of tooth 1.2 results therefore in the use of a 2.9 mm diameter implant. The clinical and radiographic control of the implant and the gingival stability at a distance of 1 year gives a positive result both clinically and radiographically. The use of the implant with a 2.9 mm diameter is therefore indicated in extreme cases of limited bone availability

    Encapsulation of Photosystem i in Organic Microparticles Increases Its Photochemical Activity and Stability for Ex Vivo Photocatalysis

    No full text
    Photosystem I (PSI) is a pigment binding multisubunit protein complex involved in the light phase of photosynthesis, catalyzing a light-dependent electron transfer reaction from plastocyanin to ferredoxin. PSI is characterized by a photochemical efficiency close to one, suggesting its possible application in light-dependent redox reaction in an extracellular context. The stability of PSI complexes isolated from plant cells is however limited if not embedded in a protective environment. Here we show an innovative solution for exploiting the photochemical properties of PSI, by encapsulation of isolated PSI complexes in PLGA (poly lactic-co-glycolic acid) organic microparticles. These encapsulated PSI complexes were able to catalyze light-dependent redox reactions with electron acceptors and donors outside the PLGA microparticles. Moreover, PSI complexes encapsulated in PLGA microparticles were characterized by a higher photochemical activity and stability compared with PSI complexes in detergent solution, suggesting their possible application for ex vivo photocatalysis
    corecore