45 research outputs found

    Organochlorine compounds (Polychlorinated biphenyls and Pesticides) and Polycyclic aromatic hydrocarbons in populations of Hexaplex trunculus affected by imposex in the lagoon of Venice, Italy

    Get PDF
    Concentrations of polychlorinated biphenyls (PCBs), organochlorine pesticides, and polycyclic aromatic hydrocarbons (PAHs) were measured in gastropods from the Lagoon of Venice, Italy. The visceral coil and the rest of the soft body of organisms (Hexaplex trunculus) sampled at two stations inside the lagoon and three stations on the seaward side were analyzed to evaluate their contamination levels. Preferential accumulation of PCBs and pesticides in the visceral coil (>80%) compared with the rest of the soft body was observed, whereas on average, PAHs showed no preferential partitioning. Differences between levels of organochlorine contaminants in the gastropods highlighted a gradient of pollution from the stations inside the lagoon (PCBs, 45-363 ng/g; pesticides, 4-51 ng/g) to the sea (PCBs, 13-131 ng/g; pesticides, 2-29 ng/g). The possible role of the three classes of contaminants, in addition to that of organotin compounds (OTCs), previously analyzed in the same samples, in causing one of the anatomic modifications because of imposex in this gastropod also was studied. A modeling approach by partial least squares (PLS) in latent variables was applied to explain the penis length of imposex-affected females with concentrations of organic pollutants. The synergistic role of PCBs, pesticides, and OTCs was evidenced, whereas the contribution of PAHs appeared to be very low

    Investigating endocrine‐disrupting properties of chemicals in fish and amphibians: Opportunities to apply the 3Rs

    Get PDF
    Many regulations are beginning to explicitly require investigation of a chemical\u27s endocrine-disrupting properties as a part of the safety assessment process for substances already on or about to be placed on the market. Different jurisdictions are applying distinct approaches. However, all share a common theme requiring testing for endocrine activity and adverse effects, typically involving in vitro and in vivo assays on selected endocrine pathways. For ecotoxicological evaluation, in vivo assays can be performed across various animal species, including mammals, amphibians, and fish. Results indicating activity (i.e., that a test substance may interact with the endocrine system) from in vivo screens usually trigger further higher-tier in vivo assays. Higher-tier assays provide data on adverse effects on relevant endpoints over more extensive parts of the organism\u27s life cycle. Both in vivo screening and higher-tier assays are animal- and resource-intensive and can be technically challenging to conduct. Testing large numbers of chemicals will inevitably result in the use of large numbers of animals, contradicting stipulations set out within many regulatory frameworks that animal studies be conducted as a last resort. Improved strategies are urgently required. In February 2020, the UK\u27s National Centre for the 3Rs and the Health and Environmental Sciences Institute hosted a workshop ( Investigating Endocrine Disrupting Properties in Fish and Amphibians: Opportunities to Apply the 3Rs ). Over 50 delegates attended from North America and Europe, across academia, laboratories, and consultancies, regulatory agencies, and industry. Challenges and opportunities in applying refinement and reduction approaches within the current animal test guidelines were discussed, and utilization of replacement and/or new approach methodologies, including in silico, in vitro, and embryo models, was explored. Efforts and activities needed to enable application of 3Rs approaches in practice were also identified. This article provides an overview of the workshop discussions and sets priority areas for follow-up. Integr Environ Assess Manag 2022;18:442-458. © 2021 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC)

    Organotin compounds in surface sediments of the Southern Baltic coastal zone: a study on the main factors for their accumulation and degradation

    Get PDF
    Abstract Sediment samples were collected in the Gulf of GdaƄsk, and the Vistula and Szczecin Lagoons—all located in the coastal zone of the Southern Baltic Sea—just after the total ban on using harmful organotins in antifouling paints on ships came into force, to assess their butyltin and phenyltin contamination extent. Altogether, 26 sampling stations were chosen to account for different potential exposure to organotin pollution and environmental conditions: from shallow and well-oxygenated waters, shipping routes and river mouths, to deep and anoxic sites. Additionally, the organic carbon content, pigment content, and grain size of all the sediment samples were determined, and some parameters of the nearbottom water (oxygen content, salinity, temperature) were measured as well. Total concentrations of butyltin compounds ranged between 2 and 182 ng Sn g−1 d.w., whereas phenyltins were below the detection limit. Sediments from the Gulf of GdaƄsk and Vistula Lagoon were found moderately contaminated with tributyltin, whereas those from the Szczecin Lagoon were ranked as highly contaminated. Butyltin degradation indices prove a recent tributyltin input into the sediments adjacent to sites used for dumping for dredged harbor materials and for anchorage in the Gulf of GdaƄsk (where two big international ports are located), and into those collected in the Szczecin Lagoon. Essential factors affecting the degradation and distribution of organotins, based on significant correlations between butyltins and environmental variables, were found in the study area
    corecore