604 research outputs found

    Organic semiconductor-based photonic crystals for solar cell arrays: band gap and optical properties

    Get PDF
    Cataloged from PDF version of article.Photonic crystals (PCs) hold great potential for designing new optical devices because of the possibility of the manipulation of light with PCs. There has been an increase in research on tuning the optical properties of PCs to design devices. We design organic semiconductor-based PC structures and calculate optical properties using the plane wave expansion method and finite-difference time-domain method in an air background for a hexagonal lattice. We showed the possibility of the solar cell arrays for a 2D PC cavity on an organic semiconductor base infiltrated with a nematic liquid crystal. E7 type has been used as a nematic liquid crystal and 4,4-Bis[4-(diphenylamino) styryl]biphenyl as an organic semiconductor material

    Absorption enhancement in InGaN-based photonic crystal-implemented solar cells

    Get PDF
    Cataloged from PDF version of article.We investigate the absorption characteristics of InGaN solar cells with high indium (0.8) content and a one-dimensional periodic nano-scale pattern (implemented) in the InGaN layer theoretically. The short-circuit current of our InGaN-based solar cell structure is calculated for different lattice constant, etch depth, and fill factor values. A substantial increase in the absorption (17.5% increase in short-circuit current) is achieved when the photonic crystal pattern is thoroughly optimized. (c) 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.JNP.6.061603

    Experimental demonstration of the enhanced transmission through circular and rectangular sub-wavelength apertures using omega-like split-ring resonators

    Get PDF
    Cataloged from PDF version of article.Enhanced transmission through circular and rectangular sub-wavelength apertures using omega-shaped split-ring resonator is numerically and experimentally demonstrated at microwave frequencies. We report a more than 150,000-fold enhancement through a deep sub-wavelength aperture drilled in a metallic screen. To the authors’ best knowledge, this is the highest experimentally obtained enhancement factor reported in the literature. In the paper, we address also the origins and the physical reasons behind the enhancement results. Moreover, we report on the differences occurring when using circular, rectangular apertures as well as doublesided and single-sided omega-like split ring resonator structures. (C) 2012 Elsevier B.V. All rights reserve

    Optical properties of metamaterial-based devices modulated by a liquid crystal

    Get PDF
    Cataloged from PDF version of article.Due to the fact that it is possible to manipulate light with photonic crystals (PCs), PCs hold a great potential for designing new optical devices. There has been an increase in research on tuning the optical properties of PCs to design devices. We presented a numerical study of optical properties of metamaterial-based devices by liquid crystal infiltration. The plane wave expansion method and finite-difference time-domain method for both TE and TM modes revealed optical properties in photonic crystal structures in an air background for a square lattice. E7 type has been used as a nematic liquid crystal and SrTiO3 as a ferroelectric material. We showed the possibility of the metamaterials for a two-dimensional photonic crystal cavity on a ferroelectric base infiltrated with a nematic liquid crystal

    Resonance tuning and broadening of bowtie nanoantennas on graphene

    Get PDF
    Cataloged from PDF version of article.Metallic bowtie antennas are used in nanophotonics applications in order to confine the electromagnetic field into volumes much smaller than that of the incident wavelength. Electrically controllable carrier concentration of graphene opens the door to the use of plasmonic nanoantenna structures with graphene so that the resonant nature of nanoantennas can be tuned. In this study, we demonstrated with the Fourier transform infrared (FTIR) spectroscopy and the Finite Difference Time Domain (FDTD) method that the intensity and resonance peak of bowtie nanoantennas on monolayer graphene can be tuned at mid-infrared (MIR) wavelength regime by applying a gate voltage, since the optical properties of graphene change by changing the carrier concentration. (C) 2014 Elsevier B.V. All rights reserved

    FSS-based approach for the power transmission enhancement through electrically small apertures

    Get PDF
    Cataloged from PDF version of article.In this paper, a novel approach, based on the employment of frequency selective surfaces, to enhance the power transmission through sub-wavelength apertures at the microwave frequencies is presented. A heuristic interpretation of the phenomenon is given, as well as an analytical model, based on the transmission line network representation. Finally, the performance of the proposed structure is validated through a set of full-wave numerical simulations. © 2011 Springer-Verlag

    Optimization and tunability of deep subwavelength resonators for metamaterial applications: complete enhanced transmission through a subwavelength aperture

    Get PDF
    Cataloged from PDF version of article.In the present work, we studied particle candidates for metamaterial applications, especially in terms of their electrical size and resonance strength. The analyzed particles can be easily produced via planar fabrication techniques. The electrical size of multi-split ring resonators, spiral resonators, and multi-spiral resonators are reported as a function of the particle side length and substrate permittivity. The study is continued by demonstrating the scalability of the particles to higher frequencies and the proposition of the optimized particle for antenna, absorber, and superlens applications: a multi-spiral resonator with lambda/30 electrical size operating at 0.810 GHz. We explain a method for tuning the resonance frequency of the multi-split structures. Finally, we demonstrate that by inserting deep subwavelength resonators into periodically arranged subwavelength apertures, complete transmission enhancement can be obtained at the magnetic resonance frequency. (C) 2009 Optical Society of Americ

    Miniaturized negative permeability materials

    Get PDF
    Cataloged from PDF version of article.Experimental and numerical studies of mu-negative (MNG) materials such as multisplit ring resonators (MSRRs) and spiral resonators (SRs) are presented. The resonance frequency of the structures is determined by the transmission measurements and minimum electrical size of lambda(0)/17 for the MSRRs and of lambda(0)/82 for the SRs observed. These MNG materials can be easily produced by the well developed printed circuit board and optical lithography techniques. They are promising elements for the development of high resolution metamaterial lenses and electrically small antennas. (c) 2007 American Institute of Physics

    Ferroelectric Based Photonic Crystal Cavity by Liquid Crystal Infiltration

    Get PDF
    Cataloged from PDF version of article.A novel type of two-dimensional photonic crystal is investigated for it optical properties as a core-shell-type ferroelectric nanorod infiltrated with nematic liquid crystals. Using the plane wave expansion method and finite-difference time-domain method, the photonic crystal structure, which is composed of a photonic crystal in a core-shell-type ferroelectric nanorod, is designed for the square lattice and the hexagonal lattice. It has been used 5CB as a photonic crystal core, and LiNbO3 as a ferroelectric material. The photonic crystal with a core-shell-type LiNbO3 nanorod infiltrated with nematic liquid crystals is compared with the photonic crystal with solid LiNbO3 rods and the photonic crystal with hollow LiNbO3 rods

    Design of Miniaturized Narrowband Absorbers Based on Resonant-Magnetic Inclusions

    Get PDF
    Cataloged from PDF version of article.In this paper, we present the design of miniaturized narrowband-microwave absorbers based on different kinds of magnetic inclusions. The operation of the proposed components originates from the resonance of a planar array of inclusions excited by an incoming wave with a given polarization. As in common absorber layouts, a 377 Omega resistive sheet is also used to absorb the electromagnetic energy of the impinging field. Since the planar array of magnetic inclusions behaves at its resonance as a perfect magnetic conductor, the resistive sheet is placed in close proximity of the resonating inclusions, without perturbing their resonance condition. In contrast to other typical absorber configurations presented in the literature, the absorber proposed in this paper is not backed by a metallic plate. This feature may be useful for stealth applications, as discussed thoroughly in the paper. The other interesting characteristic of the proposed absorbers is the subwavelength thickness, which has shown to depend only on the geometry of the basic resonant inclusions employed. At first, regular split-ring resonators (SSRs) disposed in an array configuration are considered and some application examples are presented. Absorbers based on SRRs are shown to reach thickness of the order of lambda(0)/20. In order to further squeeze the electrical thickness of the absorbers, multiple SRRs and spiral resonators are also used. The employment of such inclusions leads to the design of extremely thin microwave absorbers, whose thickness may even be close to lambda(0)/100. Finally, some examples of miniaturized absorbers suitable for a practical realization are proposed
    corecore