8 research outputs found

    Zero skew clock routing for fast clock tree generation

    Get PDF
    A Zero Skew Clock Routing Methodology has been developed to help design team speed up their clock tree generation process. The methodology works by breaking up the clock net into smaller partitions, then inserting clock buffers to drive each portion, and lastly, routing the connection from original clock source to each newly inserted clock buffers with zero skew. A few Perl scripts and a new Visual Basic based routing tool have been developed to support the methodology implementation. The routing algorithm used in this tool is based on the Exact Zero Skew Routing Algorithm. The methodology has been tested using a real design database and resulting in a significant improvement in the through put time required to complete the clock tree generation. This improvement is attributed to the ability to generate clock tree on much smaller portions of clock nets that supports of speeding up the clock tree generation process in IC design

    Left-Handed Metamaterial-Inspired Unit Cell for S-Band Glucose Sensing Application

    No full text
    This paper presents an oval-shaped sensor design for the measurement of glucose concentration in aqueous solution. This unit cell sensing device is inspired by metamaterial properties and is analytically described for better parametric study. The mechanism of the sensor is a sensing layer with varying permittivity placed between two nozzle-shaped microstrip lines. Glucose aqueous solutions were characterized considering the water dielectric constant, from 55 to 87, and were identified with a transmission coefficient at 3.914 GHz optimal frequency with double negative (DNG) metamaterial properties. Consequently, the sensitivity of the sensor was estimated at 0.037 GHz/(30 mg/dL) glucose solution. The design and analysis of this sensor was performed using the finite integration technique (FIT)-based Computer Simulation Technology (CST) microwave studio simulation software. Additionally, parametric analysis of the sensing characteristics was conducted using experimental verification for the justification. The performance of the proposed sensor demonstrates the potential application scope for glucose level identification in aqueous solutions regarding qualitative analysis

    Zero skew clock routing for fast clock tree generation

    No full text
    A Zero Skew Clock Routing Methodology has been developed to help design team speed up their clock tree generation process. The methodology works by breaking up the clock net into smaller partitions, then inserting clock buffers to drive each portion, and lastly, routing the connection from original clock source to each newly inserted clock buffers with zero skew. A few Perl scripts and a new Visual Basic based routing tool have been developed to support the methodology implementation. The routing algorithm used in this tool is based on the Exact Zero Skew Routing Algorithm. The methodology has been tested using a real design database and resulting in a significant improvement in the through put time required to complete the clock tree generation. This improvement is attributed to the ability to generate clock tree on much smaller portions of clock nets that supports of speeding up the clock tree generation process in IC design

    Monitoring of the Human Body Signal through the Internet of Things (IoT) Based LoRa Wireless Network System

    No full text
    Internet of Things (IoT) based healthcare system is now at the top peak because of its potentialities among all other IoT applications. Supporting sensors integrated with IoT healthcare can effectively analyze and gather the patients’ physical health data that has made the IoT based healthcare ubiquitously acceptable. A set of challenges including the continuous presence of the healthcare professionals and staff as well as the proper amenities in remote areas during emergency situations need to be addressed for developing a flexible IoT based healthcare system. Besides that, the human entered data are not as reliable as automated generated data. The development of the IoT based health monitoring system allows a personalized treatment in certain circumstances that helps to reduce the healthcare cost and wastage with a continuous improving outcome. We present an IoT based health monitoring system using the MySignals development shield with (Low power long range) LoRa wireless network system. Electrocardiogram (ECG) sensor, body temperature sensor, pulse rate, and oxygen saturation sensor have been used with MySignals and LoRa. Evaluating the performances and effectiveness of the sensors and wireless platform devices are also analyzed in this paper by applying physiological data analysis methodology and statistical analysis. MySignals enables the stated sensors to gather physical data. The aim is to transmit the gathered data from MySignals to a personal computer by implementing a wireless system with LoRa. The results show that MySignals is successfully interfaced with the ECG, temperature, oxygen saturation, and pulse rate sensors. The communication with the hyper-terminal program using LoRa has been implemented and an IoT based healthcare system is being developed in MySignals platform with the expected results getting from the sensors

    Conformational features and geometry of molecules in crystals of bridging ortho,ortho-bisphenols and related compounds: A review

    No full text
    corecore