13 research outputs found

    Peregrine and saker falcon genome sequences provide insights into evolution of a predatory lifestyle

    Get PDF
    As top predators, falcons possess unique morphological, physiological and behavioral adaptations that allow them to be successful hunters: for example, the peregrine is renowned as the world's fastest animal. To examine the evolutionary basis of predatory adaptations, we sequenced the genomes of both the peregrine (Falco peregrinus) and saker falcon (Falco cherrug), and we present parallel, genome-wide evidence for evolutionary innovation and selection for a predatory lifestyle. The genomes, assembled using Illumina deep sequencing with greater than 100-fold coverage, are both approximately 1.2 Gb in length, with transcriptome-assisted prediction of approximately 16,200 genes for both species. Analysis of 8,424 orthologs in both falcons, chicken, zebra finch and turkey identified consistent evidence for genome-wide rapid evolution in these raptors. SNP-based inference showed contrasting recent demographic trajectories for the two falcons, and gene-based analysis highlighted falcon-specific evolutionary novelties for beak development and olfaction and specifically for homeostasis-related genes in the arid environment–adapted saker

    Multi-technology platforms (MTPs)

    No full text
    The growing demand for individualized commodities requires new solutions for a highly flexible yet cost-efficient production. Hence, the research results described in this chapter address the question of how different manufacturing technologies could be combined and employed efficiently in industrial practice. Reaching across the whole field of Multi-Technology Platforms (MTPs) a generalized design methodology was examined. The resulting template-based procedure, combining function structure and technology chains, is introduced in the first section. Consecutively, the next section advances this approach by illustrating the incorporation of metrology into machine tools and MTPs. For technological validation, all newly-developed scientific approaches were successfully integrated into four demonstrator test beds located at the RWTH Aachen University: a Multi-Technology Machining Center, a Hybrid Sheet Metal Processing Center, a Conductive Friction Stir Welding Center and a laser-enhanced hybrid lathe. The economic efficiency of manufacturing technology integration is reviewed before a profitability assessment based on the aforementioned demonstrator test beds is performed. The chapter concludes with an outlook on future research topics

    Exonic Versus Intronic Snps: Contrasting Roles In Revealing The Population Genetic Differentiation Of A Widespread Bird Species

    No full text
    Recent years have seen considerable progress in applying single nucleotide polymorphisms (SNPs) to population genetics studies. However, relatively few have attempted to use them to study the genetic differentiation of wild bird populations and none have examined possible differences of exonic and intronic SNPs in these studies. Here, using 144 SNPs, we examined population genetic differentiation in the saker falcon (Falco cherrug) across Eurasia. The position of each SNP was verified using the recently sequenced saker genome with 108 SNPs positioned within the introns of 10 fragments and 36 SNPs in the exons of six genes, comprising MHC, MC1R and four others. In contrast to intronic SNPs, both Bayesian clustering and principal component analyses using exonic SNPs consistently revealed two genetic clusters, within which the least admixed individuals were found in Europe/central Asia and Qinghai (China), respectively. Pairwise D analysis for exonic SNPs showed that the two populations were significantly differentiated and between the two clusters the frequencies of five SNP markers were inferred to be influenced by selection. Central Eurasian populations clustered in as intermediate between the two main groups, consistent with their geographic position. But the westernmost populations of central Europe showed evidence of demographic isolation. Our work highlights the importance of functional exonic SNPs for studying population genetic pattern in a widespread avian species.Wo
    corecore