131,471 research outputs found

    Only hybrid anyons can exist in broken symmetry phase of nonrelativistic U(1)2U(1)^{2} Chern-Simons theory

    Full text link
    We present two examples of parity-invariant [U(1)]2[U(1)]^{2} Chern-Simons-Higgs models with spontaneously broken symmetry. The models possess topological vortex excitations. It is argued that the smallest possible flux quanta are composites of one quantum of each type (1,1)(1,1). These hybrid anyons will dominate the statistical properties near the ground state. We analyse their statistical interactions and find out that unlike in the case of Jackiw-Pi solitons there is short range magnetic interaction which can lead to formation of bound states of hybrid anyons. In addition to mutual interactions they possess internal structure which can lead upon quantisation to discrete spectrum of energy levels.Comment: 10 pages in plain Latex (one argument added, version accepted for publication in Phys.Rev.D(Rapid Communications)

    Spinless Calogero-Sutherland model with twisted boundary condition

    Full text link
    In this work, the spinless Calogero-Sutherland model with twisted boundary condition is studied. The ground state wavefunctions, the ground state energies, the full energy spectrum are provided in details.Comment: preprint of ETH-L, appearing in recent PR

    Generalized Swanson models and their solutions

    Full text link
    We analyze a class of non-Hermitian quadratic Hamiltonians, which are of the form H=AA+αA2+βA2 H = {\cal{A}}^{\dagger} {\cal{A}} + \alpha {\cal{A}} ^2 + \beta {\cal{A}}^{\dagger 2} , where α,β \alpha, \beta are real constants, with αβ \alpha \neq \beta , and A{\cal{A}}^{\dagger} and A{\cal{A}} are generalized creation and annihilation operators. Thus these Hamiltonians may be classified as generalized Swanson models. It is shown that the eigenenergies are real for a certain range of values of the parameters. A similarity transformation ρ\rho, mapping the non-Hermitian Hamiltonian HH to a Hermitian one hh, is also obtained. It is shown that HH and hh share identical energies. As explicit examples, the solutions of a couple of models based on the trigonometric Rosen-Morse I and the hyperbolic Rosen-Morse II type potentials are obtained. We also study the case when the non-Hermitian Hamiltonian is PT{\cal{PT}} symmetric.Comment: 17 page

    Combinatorial interpretation of Haldane-Wu fractional exclusion statistics

    Full text link
    Assuming that the maximal allowed number of identical particles in state is an integer parameter, q, we derive the statistical weight and analyze the associated equation which defines the statistical distribution. The derived distribution covers Fermi-Dirac and Bose-Einstein ones in the particular cases q = 1 and q -> infinity (n_i/q -> 1), respectively. We show that the derived statistical weight provides a natural combinatorial interpretation of Haldane-Wu fractional exclusion statistics, and present exact solutions of the distribution equation.Comment: 8 pages, 2 eps-figure

    Propagation of charged particle waves in a uniform magnetic field

    Full text link
    This paper considers the probability density and current distributions generated by a point-like, isotropic source of monoenergetic charges embedded into a uniform magnetic field environment. Electron sources of this kind have been realized in recent photodetachment microscopy experiments. Unlike the total photocurrent cross section, which is largely understood, the spatial profiles of charge and current emitted by the source display an unexpected hierarchy of complex patterns, even though the distributions, apart from scaling, depend only on a single physical parameter. We examine the electron dynamics both by solving the quantum problem, i. e., finding the energy Green function, and from a semiclassical perspective based on the simple cyclotron orbits followed by the electron. Simulations suggest that the semiclassical method, which involves here interference between an infinite set of paths, faithfully reproduces the features observed in the quantum solution, even in extreme circumstances, and lends itself to an interpretation of some (though not all) of the rich structure exhibited in this simple problem.Comment: 39 pages, 16 figure

    Spontaneous Lorentz Breaking and Massive Gravity

    Get PDF
    We study a theory where the presence of an extra spin-two field coupled to gravity gives rise to a phase with spontaneously broken Lorentz symmetry. In this phase gravity is massive, and the Weak Equivalence Principle is respected. The newtonian potentials are in general modified, but we identify an non-perturbative symmetry that protects them. The gravitational waves sector has a rich phenomenology: sources emit a combination of massless and massive gravitons that propagate with distinct velocities and also oscillate. Since their velocities differ from the speed of light, the time of flight difference between gravitons and photons from a common source could be measured.Comment: 4 page

    Electron Addition Spectrum in the Supersymmetric t-J Model with Inverse-Square Interaction

    Full text link
    The electron addition spectrum A^+(k,omega) is obtained analytically for the one-dimensional (1D) supersymmetric t-J model with 1/r^2 interaction. The result is obtained first for a small-sized system and its validity is checked against the numerical calculation. Then the general expression is found which is valid for arbitrary size of the system. The thermodynamic limit of A^+(k,omega) has a simple analytic form with contributions from one spinon, one holon and one antiholon all of which obey fractional statistics. The upper edge of A^+(k,omega) in the (k,omega) plane includes a delta-function peak which reduces to that of the single-electron band in the low-density limit.Comment: 5 pages, 1 figure, accepted for publication in Phys. Rev. Let

    Phase-change chalcogenide glass metamaterial

    Full text link
    Combining metamaterials with functional media brings a new dimension to their performance. Here we demonstrate substantial resonance frequency tuning in a photonic metamaterial hybridized with an electrically/optically switchable chalcogenide glass. The transition between amorphous and crystalline forms brings about a 10% shift in the near-infrared resonance wavelength of an asymmetric split-ring array, providing transmission modulation functionality with a contrast ratio of 4:1 in a device of sub-wavelength thickness.Comment: 3 pages, 3 figure

    Orbital order in La0.5Sr1.5MnO4: beyond a common local Jahn-Teller picture

    Full text link
    The standard way to find the orbital occupation of Jahn-Teller (JT) ions is to use structural data, with the assumption of a one-to-one correspondence between the orbital occupation and the associated JT distortion, e.g. in O6 octahedron. We show, however, that this approach in principle does not work for layered systems. Specifically, using the layered manganite La0.5Sr1.5MnO4 as an example, we found from our x-ray absorption measurements and theoretical calculations, that the type of orbital ordering strongly contradicts the standard local distortion approach for the Mn3+O6 octahedra, and that the generally ignored long-range crystal field effect and anisotropic hopping integrals are actually crucial to determine the orbital occupation. Our findings may open a pathway to control of the orbital state in multilayer systems and thus of their physical properties.Comment: 4+ pages, 4 figure
    corecore