4,408 research outputs found
Casimir Effect in the Rainbow Einstein's Universe
In the present paper we investigate the effects caused by the modification of
the dispersion relation obtained by solving the Klein-Gordon equation in the
closed Einstein's universe in the context of rainbow's gravity models. Thus, we
analyse how the quantum vacuum fluctuations of the scalar field are modified
when compared with the results obtained in the usual General Relativity
scenario. The regularization, and consequently the renormalization, of the
vacuum energy is performed adopting the Epstein-Hurwitz and Riemann's zeta
functions.Comment: 15 pages, 1 figure. To appear in Europhysics Letter
Body-freedom flutter of a 1/2-scale forward-swept-wing model, an experimental and analytical study
The aeroelastic phenomenon known as body-freedom flutter (BFF), a dynamic instability involving aircraft-pitch and wing-bending motions which, though rarely experienced on conventional vehicles, is characteristic of forward swept wing (FSW) aircraft was investigated. Testing was conducted in the Langley transonic dynamics tunnel on a flying, cable-mounted, 1/2-scale model of a FSW configuration with and without relaxed static stability (RSS). The BFF instability boundaries were found to occur at significantly lower airspeeds than those associated with aeroelastic wing divergence on the same model. For those cases with RSS, a canard-based stability augmentation system (SAS) was incorporated in the model. This SAS was designed using aerodynamic data measured during a preliminary tunnel test in which the model was attached to a force balance. Data from the subsequent flutter test indicated that BFF speed was not dependent on open-loop static margin but, rather, on the equivalent closed-loop dynamics provided by the SAS. Servo-aeroelastic stability analyses of the flying model were performed using a computer code known as SEAL and predicted the onset of BFF reasonably well
Spectroscopic and microscopic analyses of Fe3O4/au nanoparticles obtained by laser ablation in water
Magneto-plasmonic nanoparticles constituted of gold and iron oxide were obtained in an aqueous environment by laser ablation of iron and gold targets in two successive steps. Gold nanoparticles are embedded in a mucilaginous matrix of iron oxide, which was identified as magnetite by both microscopic and spectroscopic analyses. The plasmonic properties of the obtained colloids, as well as their adsorption capability, were tested by surface-enhanced Raman scattering (SERS) spectroscopy using 2,2′-bipyridine as a probe molecule. DFT calculations allowed for obtaining information on the adsorption of the ligand molecules that strongly interact with positively charged surface active sites of the gold nanoparticles, thus providing efficient SERS enhancement. The presence of iron oxide gives the bimetallic colloid new possibilities of adsorption in addition to those inherent to gold nanoparticles, especially regarding organic pollutants and heavy metals, allowing to remove them from the aqueous environment by applying a magnetic field. Moreover, these nanoparticles, thanks to their low toxicity, are potentially useful not only in the field of sensors, but also for biomedical applications
Muon Detection of TeV Gamma Rays from Gamma Ray Bursts
Because of the limited size of the satellite-borne instruments, it has not
been possible to observe the flux of gamma ray bursts (GRB) beyond GeV energy.
We here show that it is possible to detect the GRB radiation of TeV energy and
above, by detecting the muon secondaries produced when the gamma rays shower in
the Earth's atmosphere. Observation is made possible by the recent
commissioning of underground detectors (AMANDA, the Lake Baikal detector and
MILAGRO) which combine a low muon threshold of a few hundred GeV or less, with
a large effective area of 10^3 m^2 or more. Observations will not only provide
new insights in the origin and characteristics of GRB, they also provide
quantitative information on the diffuse infrared background.Comment: Revtex, 12 pages, 3 postscript figures, uses epsfig.st
Palladium oxide nanoparticles: Preparation, characterization and catalytic activity evaluation
Stable palladium oxide nanoparticles were prepared in aqueous suspension with a very simple procedure, by dissolving palladium nitrate in water at a concentration around 10-4 M. UV-visible absorption spectroscopy was adopted to follow the formation of these nanoparticles, which were characterized by TEM microscopy, along with XRD, XPS and Raman measurements. DFT calculations allowed to interpret the Raman data and to clarify the species present at the surface of the nanoparticles. The catalytic activity of the latter was evaluated by monitoring the reduction of p-nitrophenol to p-aminophenol. This investigation paves the way to the use of these colloidal nanoparticles in processes of heterogeneous catalysis, in particular those concerning the catalytic degradation of aromatic derivatives that represent a serious danger for the environment as pollutants, as in the case of p-nitrophenol
SERS, XPS and DFT study of xanthine adsorbed on citrate-stabilized gold nanoparticles
We have studied the adsorption of xanthine, a nucleobase present in human tissue and fluids that is involved in important metabolic processes, on citrate-reduced gold colloidal nanoparticles by means of surface-enhanced Raman scattering (SERS), absorption, and X-ray photoelectron spectroscopy (XPS) measurements, along with density functional theory (DFT) calculations. The citrate anions stabilize the colloidal suspensions by strongly binding the gold nanoparticles. However, these anions do not impair the adsorption of xanthine on positively-charged active sites present on the metal surface. We have obtained the Fourier transform (FT)-SERS spectra of adsorbed xanthine by laser excitation in the near infrared spectral region, where interference due to fluorescence emission does not usually occur. In fact, the addition of chloride ions to the Au/xanthine colloid induces the aggregation of the gold nanoparticles, whose plasmonic band is shifted to the near infrared region where there is the exciting laser line of the FT\u2013Raman instrument. Hence, this analytical approach is potentially suitable for spectroscopic determination of xanthine directly in body fluids, avoiding fluorescence phenomena induced by visible laser irradiation
Graphene-based spin-pumping transistor
We demonstrate with a fully quantum-mechanical approach that graphene can
function as gate-controllable transistors for pumped spin currents, i.e., a
stream of angular momentum induced by the precession of adjacent
magnetizations, which exists in the absence of net charge currents.
Furthermore, we propose as a proof of concept how these spin currents can be
modulated by an electrostatic gate. Because our proposal involves nano-sized
systems that function with very high speeds and in the absence of any applied
bias, it is potentially useful for the development of transistors capable of
combining large processing speeds, enhanced integration and extremely low power
consumption
- …