8 research outputs found

    Genome-wide characterization of genetic variants and putative regions under selection in meat and egg-type chicken lines

    Get PDF
    Abstract\ud \ud Background\ud Meat and egg-type chickens have been selected for several generations for different traits. Artificial and natural selection for different phenotypes can change frequency of genetic variants, leaving particular genomic footprints throghtout the genome. Thus, the aims of this study were to sequence 28 chickens from two Brazilian lines (meat and white egg-type) and use this information to characterize genome-wide genetic variations, identify putative regions under selection using Fst method, and find putative pathways under selection.\ud \ud \ud Results\ud A total of 13.93 million SNPs and 1.36 million INDELs were identified, with more variants detected from the broiler (meat-type) line. Although most were located in non-coding regions, we identified 7255 intolerant non-synonymous SNPs, 512 stopgain/loss SNPs, 1381 frameshift and 1094 non-frameshift INDELs that may alter protein functions. Genes harboring intolerant non-synonymous SNPs affected metabolic pathways related mainly to reproduction and endocrine systems in the white-egg layer line, and lipid metabolism and metabolic diseases in the broiler line. Fst analysis in sliding windows, using SNPs and INDELs separately, identified over 300 putative regions of selection overlapping with more than 250 genes. For the first time in chicken, INDEL variants were considered for selection signature analysis, showing high level of correlation in results between SNP and INDEL data. The putative regions of selection signatures revealed interesting candidate genes and pathways related to important phenotypic traits in chicken, such as lipid metabolism, growth, reproduction, and cardiac development.\ud \ud \ud Conclusions\ud In this study, Fst method was applied to identify high confidence putative regions under selection, providing novel insights into selection footprints that can help elucidate the functional mechanisms underlying different phenotypic traits relevant to meat and egg-type chicken lines. In addition, we generated a large catalog of line-specific and common genetic variants from a Brazilian broiler and a white egg layer line that can be used for genomic studies involving association analysis with phenotypes of economic interest to the poultry industry.CB received a fellowship from the program Science Without Borders - National Council for Scientific and Technological Development (CNPq, grant 370620/2013–5). GCMM and TFG received fellowships from São Paulo Research Foundation (FAPESP, grants 14/21380–9 and 15/00616–7). LLC is recipient of productivity fellowship from CNPq. This project was funded by São Paulo Research Foundation (FAPESP) - thematic project (2014/08704–0)

    Variant discovery in a QTL region on chromosome 3 associated with fatness in chickens

    No full text
    Abdominal fat content is an economically important trait in commercially bred chickens. Although many quantitative trait loci (QTL) related to fat deposition have been detected, the resolution for these regions is low and functional variants are still unknown. The current study was conducted aiming at increasing resolution for a region previously shown to have a QTL associated with fat deposition, to detect novel variants from this region and to annotate those variants to delineate potentially functional ones as candidates for future studies. To achieve this, 18 chickens from a parental generation used in a reciprocal cross between broiler and layer lines were sequenced using the Illumina next-generation platform with an initial coverage of 18X/chicken. The discovery of genetic variants was performed in a QTL region located on chromosome 3 between microsatellite markers LEI0161 and ADL0371 (33 595 706-42 632 651 bp). A total of 136 054 unique SNPs and 15 496 unique INDELs were detected in this region, and after quality filtering, 123 985 SNPs and 11 298 INDELs were retained. Of these variants, 386 SNPs and 15 INDELs were located in coding regions of genes related to important metabolic pathways. Loss-of-function variants were identified in several genes, and six of those, namely LOC771163, EGLN1, GNPAT, FAM120B, THBS2 and GGPS1, were related to fat deposition. Therefore, these loss-of-function variants are candidate mutations for conducting further studies on this important trait in chickens

    Chicken Feather Waste Hydrolysate as a Superior Biofertilizer in Agroindustry

    No full text
    corecore