127 research outputs found

    Quantitative Proteomic Profiling of Small Molecule Treated Mesenchymal Stem Cells Using Chemical Probes.

    Full text link
    The differentiation of human adipose derived stem cells toward a neural phenotype by small molecules has been a vogue topic in the last decade. The characterization of the produced cells has been explored on a broad scale, examining morphological and specific surface protein markers; however, the lack of insight into the expression of functional proteins and their interactive partners is required to further understand the extent of the process. The phenotypic characterization by proteomic profiling allows for a substantial in-depth analysis of the molecular machinery induced and directing the cellular changes through the process. Herein we describe the temporal analysis and quantitative profiling of neural differentiating human adipose-derived stem cells after sub-proteome enrichment using a bisindolylmaleimide chemical probe. The results show that proteins enriched by the Bis-probe were identified reproducibly with 133, 118, 126 and 89 proteins identified at timepoints 0, 1, 6 and 12, respectively. Each temporal timepoint presented several shared and unique proteins relative to neural differentiation and their interactivity. The major protein classes enriched and quantified were enzymes, structural and ribosomal proteins that are integral to differentiation pathways. There were 42 uniquely identified enzymes identified in the cells, many acting as hubs in the networks with several interactions across the network modulating key biological pathways. From the cohort, it was found by gene ontology analysis that 18 enzymes had direct involvement with neurogenic differentiation

    Effectiveness of moving on: an Australian designed generic self-management program for people with a chronic illness

    Get PDF
    Background: This paper presents the evaluation of “Moving On”, a generic self-management program for people with a chronic illness developed by Arthritis NSW. The program aims to help participants identify their need for behavior change and acquire the knowledge and skills to implement changes that promote their health and quality of life. Method: A prospective pragmatic randomised controlled trial involving two group programs in community settings: the intervention program (Moving On) and a control program (light physical activity). Participants were recruited by primary health care providers across the north-west region of metropolitan Sydney, Australia between June 2009 and October 2010. Patient outcomes were self-reported via pre- and post-program surveys completed at the time of enrolment and sixteen weeks after program commencement. Primary outcomes were change in self-efficacy (Self-efficacy for Managing Chronic Disease 6-Item Scale), self-management knowledge and behaviour and perceived health status (Self-Rated Health Scale and the Health Distress Scale). Results: A total of 388 patient referrals were received, of whom 250 (64.4%) enrolled in the study. Three patients withdrew prior to allocation. 25 block randomisations were performed by a statistician external to the research team: 123 patients were allocated to the intervention program and 124 were allocated to the control program. 97 (78.9%) of the intervention participants commenced their program. The overall attrition rate of 40.5% included withdrawals from the study and both programs. 24.4% of participants withdrew from the intervention program but not the study and 22.6% withdrew from the control program but not the study. A total of 62 patients completed the intervention program and follow-up evaluation survey and 77 patients completed the control program and follow- up evaluation survey. At 16 weeks follow-up there was no significant difference between intervention and control groups in self-efficacy; however, there was an increase in self-efficacy from baseline to follow-up for the intervention participants (t=−1.948, p=0.028). There were no significant differences in self-rated health or health distress scores between groups at follow-up, with both groups reporting a significant decrease in health distress scores. There was no significant difference between or within groups in self-management knowledge and stage of change of behaviours at follow-up. Intervention group attenders had significantly higher physical activity (t=−4.053, p=0.000) and nutrition scores (t=2.315, p= 0.01) at follow-up; however, these did not remain significant after adjustment for covariates. At follow-up, significantly more participants in the control group (20.8%) indicated that they did not have a self-management plan compared to those in the intervention group (8.8%) (X2=4.671, p=0.031). There were no significant changes in other self-management knowledge areas and behaviours after adjusting for covariates at follow-up. Conclusions: The study produced mixed findings. Differences between groups as allocated were diluted by the high proportion of patients not completing the program. Further monitoring and evaluation are needed of the impact and cost effectiveness of the program. Trial registration: Australian New Zealand Clinical Trials Registry: ACTRN1260900029821

    Immunizations with diverse sarbecovirus receptor-binding domains elicit SARS-CoV-2 neutralizing antibodies against a conserved site of vulnerability.

    Full text link
    Viral mutations are an emerging concern in reducing SARS-CoV-2 vaccination efficacy. Second-generation vaccines will need to elicit neutralizing antibodies against sites that are evolutionarily conserved across the sarbecovirus subgenus. Here, we immunized mice containing a human antibody repertoire with diverse sarbecovirus receptor-binding domains (RBDs) to identify antibodies targeting conserved sites of vulnerability. Antibodies with broad reactivity against diverse clade B RBDs targeting the conserved class 4 epitope, with recurring IGHV/IGKV pairs, were readily elicited but were non-neutralizing. However, rare class 4 antibodies binding this conserved RBD supersite showed potent neutralization of SARS-CoV-2 and all variants of concern. Structural analysis revealed that the neutralizing ability of cross-reactive antibodies was reserved only for those with an elongated CDRH3 that extends the antiparallel beta-sheet RBD core and orients the antibody light chain to obstruct ACE2-RBD interactions. These results identify a structurally defined pathway for vaccine strategies eliciting escape-resistant SARS-CoV-2 neutralizing antibodies

    The growth of potato

    No full text

    The diffusive conductivity of stomata of wheat leaves

    No full text

    Hollow-Fiber Assay for Ligand-Mediated Cell Adhesion

    Full text link
    Background: The investigation of receptor-ligand interactions in the cellular context presents significant technical challenges, first, to immobilize the ligand in a manner that preserves functional properties and, second, to relate ligand properties to cell adhesion and other cellular processes. Methods: Ligand-mediated cell adhesion was characterized by the development of a cellulose hollow-fiber adhesion assay in which ligand (protein A) was immobilized onto the cellulose membrane as a recombinant fusion protein containing a cellulose-binding domain affinity tag. Modules containing single cellulose hollow fibers were connected to a micro-flow system for cell deposition and detachment with fluid shear stress. The cell adhesion process that occurred inside a segment of hollow fiber was observed in real time by using an inverted microscope equipped with a CCD camera and digital frame grabber. Image analysis software was developed to count cells and record digital images. Results: Cell adhesion strength was characterized by counting the number of cells that were detached by application of fluid shear stress with values that ranged from 2.3 to 185 dyne/cm2. The median shear stress of detachment of KG1a cells was directly related to the duration of membrane contact and the amount of immobilized monoclonal antibody (anti-CD34). Conclusions: The hollow-fiber assay provides a general method to determine functional properties of molecular domains that interact with cell surface receptors and markers. © 2003 Wiley-Liss, Inc

    A contribution-based decomposition method for multidisciplinary engineering optimization

    No full text
    The paper reports a novel decomposition method that we refer to as Contribution-based Decomposition. Based on the contributions of variables to the objective functions, a design problem is decomposed into a number of subproblems so that the variables have similar contributions within a subproblem. To cope with the variation of variables' contributions during the optimization process, a Dynamic Contribution-based Decomposition is applied. A subspace optimization method has been employed to solve decomposed subproblems without explicit coordination. The lack of global search ability of the subspace optimization can be overcome by a random decomposition working in conjunction with the Dynamic Contribution-based Decomposition to maintain compulsory re-decompositions. All these decomposition methods have been tested through a number of numerical examples and engineering design problems. The results indicate that decomposition methods based on contribution information can benefit the computing in terms of convergence stability, reliability, accuracy of final results, and reduction of computing iterations
    • 

    corecore