305 research outputs found

    Pre-Flight Calibration of the Mars 2020 Rover Mastcam Zoom (Mastcam-Z) Multispectral, Stereoscopic Imager

    Get PDF
    The NASA Perseverance rover Mast Camera Zoom (Mastcam-Z) system is a pair of zoomable, focusable, multi-spectral, and color charge-coupled device (CCD) cameras mounted on top of a 1.7 m Remote Sensing Mast, along with associated electronics and two calibration targets. The cameras contain identical optical assemblies that can range in focal length from 26 mm (25.5∘×19.1∘ FOV) to 110 mm (6.2∘×4.2∘ FOV) and will acquire data at pixel scales of 148-540 μm at a range of 2 m and 7.4-27 cm at 1 km. The cameras are mounted on the rover’s mast with a stereo baseline of 24.3±0.1 cm and a toe-in angle of 1.17±0.03∘ (per camera). Each camera uses a Kodak KAI-2020 CCD with 1600×1200 active pixels and an 8 position filter wheel that contains an IR-cutoff filter for color imaging through the detectors’ Bayer-pattern filters, a neutral density (ND) solar filter for imaging the sun, and 6 narrow-band geology filters (16 total filters). An associated Digital Electronics Assembly provides command data interfaces to the rover, 11-to-8 bit companding, and JPEG compression capabilities. Herein, we describe pre-flight calibration of the Mastcam-Z instrument and characterize its radiometric and geometric behavior. Between April 26thth and May 9thth, 2019, ∼45,000 images were acquired during stand-alone calibration at Malin Space Science Systems (MSSS) in San Diego, CA. Additional data were acquired during Assembly Test and Launch Operations (ATLO) at the Jet Propulsion Laboratory and Kennedy Space Center. Results of the radiometric calibration validate a 5% absolute radiometric accuracy when using camera state parameters investigated during testing. When observing using camera state parameters not interrogated during calibration (e.g., non-canonical zoom positions), we conservatively estimate the absolute uncertainty to be 0.2 design requirement. We discuss lessons learned from calibration and suggest tactical strategies that will optimize the quality of science data acquired during operation at Mars. While most results matched expectations, some surprises were discovered, such as a strong wavelength and temperature dependence on the radiometric coefficients and a scene-dependent dynamic component to the zero-exposure bias frames. Calibration results and derived accuracies were validated using a Geoboard target consisting of well-characterized geologic samples

    Mastcam-Z multispectral database from the Perseverance rover’s traverse in the Jezero crater floor, Mars (sols 0-380)

    Get PDF
    NASA’s Mars-2020 Perseverance rover spent its first year in Jezero crater studying the mafic lava flows of the Máaz formation and the ultramafic cumulates of the Séítah formation. Perseverance’s Mastcam-Z instrument, a pair of multispectral, stereoscopic zoom-lens cameras, provides broadband red/green/blue (RGB), narrowband visible to near-infrared color (VNIR, 440-1020 nm wavelength range). We compiled Mastcam-Z spectra from Perseverance’s exploration of the Jezero crater floor in the first 380 sols of its mission. Here, we provide a database of ~2400 representative spectra with extensive metadata, and the locations of the regions of interest (ROIs) from which the spectra were extracted. We also include “natural color” red, green, blue (RGB) images for context, “enhanced color images” derived by stretching narrowband images, and “decorrelation stretch” (DCS) images. This dataset can serve as a baseline to interpret future observations from Perseverance’s ongoing exploration of Jezero crater, Mars

    I servizi pubblici negli anni '80

    No full text

    Musei e Costituzione

    No full text
    corecore