117 research outputs found

    The Lack of WIP Binding to Actin Results in Impaired B Cell Migration and Altered Humoral Immune Responses

    Get PDF
    Wiskott-Aldrich syndrome protein (WASp) is a main cytoskeletal regulator in B cells. WASp-interacting protein (WIP) binds to and stabilizes WASp but also interacts with actin. Using mice with a mutated actin binding domain of WIP (WIPΔABD), we here investigated the role of WIP binding to actin during B cell activation. We found an altered differentiation of WIPΔABD B cells and diminished antibody affinity maturation after immunization. Mechanistically, WIPΔABD B cells showed impaired B cell receptor (BCR)-induced PI3K signaling and actin reorganization, likely caused by diminished CD81 expression and altered CD19 dynamics on the B cell surface. WIPΔABD B cells displayed reduced in vivo motility, concomitantly with impaired chemotaxis and defective F-actin polarization, HS1 phosphorylation, and polarization of HS1 to F-actin-rich structures after CXCL12 stimulation in vitro. We thus concluded that WIP binding to actin, independent of its binding to WASp, is critical for actin cytoskeleton plasticity in B cells

    Potato response to potassium application rates and timing under semi-arid conditions

    Get PDF
    A two-year experiment (2004-2005) was conducted at Tal Amara Research Station in the Bekaa Valley of Lebanon to evaluate the influence of progressive application of K rates and application timing on yield, yield components and tuber quality of potato (Solanum tuberosum L. cv. Agria). Four levels of potassium (0 (K0), 75 (K75), 150 (K150), and 225 (K225) kg K2O ha-1) and two application timings (tuber initiation and tuber bulking stages) were used in a split-plot design. The progressive application of potassium fertilizer from 0 to 225 kg K2O ha-1 significantly affected the yield and yield components of potato. In both years, small grade tubers and aggregate tuber yield increased quadratically with increasing K application rates up to 150 kg K2O ha-1, reaching a plateau thereafter, showing luxury consumption of the nutrient at 225 kg K2O ha-1. In 2004 when averaged over K application rates, large and medium grade tubers and aggregated tuber yield were 120%, 22%, and 12% greater, respectively, with K application at tuber bulking than at tuber initiation. A similar trend was also observed in 2005, when the small grade tubers and aggregate tuber yield were 20% and 12% higher, respectively, with K application at tuber bulking than at tuber initiation stage. Finally, no significant difference among treatments was observed for tuber dry matter (avg. 19.8%) and specific gravity (1.08 g cm-3)

    A novel primary human immunodeficiency due to deficiency in the WASP-interacting protein WIP

    Get PDF
    A female offspring of consanguineous parents, showed features of Wiskott-Aldrich syndrome (WAS), including recurrent infections, eczema, thrombocytopenia, defective T cell proliferation and chemotaxis, and impaired natural killer cell function. Cells from this patient had undetectable WAS protein (WASP), but normal WAS sequence and messenger RNA levels. WASP interacting protein (WIP), which stabilizes WASP, was also undetectable. A homozygous c.1301C>G stop codon mutation was found in the WIPF1 gene, which encodes WIP. Introduction of WIP into the patient’s T cells restored WASP expression. These findings indicate that WIP deficiency should be suspected in patients with features of WAS in whom WAS sequence and mRNA levels are normal

    Mitochondrial Superoxide Contributes to Blood Flow and Axonal Transport Deficits in the Tg2576 Mouse Model of Alzheimer's Disease

    Get PDF
    Alzheimer's disease (AD) is a neurodegenerative disease characterized by the progressive decline in cognitive functions and the deposition of aggregated amyloid beta (Abeta) into senile plaques and the protein tau into tangles. In addition, a general state of oxidation has long been known to be a major hallmark of the disease. What is not known however, are the mechanisms by which oxidative stress contributes to the pathology of AD.In the current study, we used a mouse model of AD and genetically boosted its ability to quench free radicals of specific mitochondrial origin. We found that such manipulation conferred to the AD mice protection against vascular as well as neuronal deficits that typically affect them. We also found that the vascular deficits are improved via antioxidant modulation of the endothelial nitric oxide synthase, an enzyme primarily responsible for the production of nitric oxide, while neuronal deficits are improved via modulation of the phosphorylation status of the protein tau, which is a neuronal cytoskeletal stabilizer.These findings directly link free radicals of specific mitochondrial origin to AD-associated vascular and neuronal pathology

    Bim Nuclear Translocation and Inactivation by Viral Interferon Regulatory Factor

    Get PDF
    Viral replication efficiency is in large part governed by the ability of viruses to counteract pro-apoptotic signals induced by infection of the host cell. Human herpesvirus 8 (HHV-8) uses several strategies to block the host's innate antiviral defenses via interference with interferon and apoptotic signaling. Contributors include the four viral interferon regulatory factors (vIRFs 1–4), which function in dominant negative fashion to block cellular IRF activities in addition to targeting IRF signaling-induced proteins such as p53 and inhibiting other inducers of apoptosis such as TGFβ receptor-activated Smad transcription factors. Here we identify direct targeting by vIRF-1 of BH3-only pro-apoptotic Bcl-2 family member Bim, a key negative regulator of HHV-8 replication, to effect its inactivation via nuclear translocation. vIRF-1-mediated relocalization of Bim was identified in transfected cells, by both immunofluorescence assay and western analysis of fractionated cell extracts. Also, co-localization of vIRF-1 and Bim was detected in nuclei of lytically infected endothelial cells. In vitro co-precipitation assays using purified vIRF-1 and Bim revealed direct interaction between the proteins, and Bim-binding residues of vIRF-1 were mapped by deletion and point mutagenesis. Generation and experimental utilization of Bim-refractory vIRF-1 variants revealed the importance of vIRF-1:Bim interaction, specifically, in pro-replication and anti-apoptotic activity of vIRF-1. Furthermore, blocking of the interaction with cell-permeable peptide corresponding to the Bim-binding region of vIRF-1 confirmed the relevance of vIRF-1:Bim association to vIRF-1 pro-replication activity. To our knowledge, this is the first report of an IRF protein that interacts with a Bcl-2 family member and of nuclear sequestration of Bim or any other member of the family as a means of inactivation. The data presented reveal a novel mechanism utilized by a virus to control replication-induced apoptosis and suggest that inhibitory targeting of vIRF-1:Bim interaction may provide an effective antiviral strategy

    Early Induction of Oxidative Stress in Mouse Model of Alzheimer Disease with Reduced Mitochondrial Superoxide Dismutase Activity

    Get PDF
    While oxidative stress has been linked to Alzheimer's disease, the underlying pathophysiological relationship is unclear. To examine this relationship, we induced oxidative stress through the genetic ablation of one copy of mitochondrial antioxidant superoxide dismutase 2 (Sod2) allele in mutant human amyloid precursor protein (hAPP) transgenic mice. The brains of young (5–7 months of age) and old (25–30 months of age) mice with the four genotypes, wild-type (Sod2+/+), hemizygous Sod2 (Sod2+/−), hAPP/wild-type (Sod2+/+), and hAPP/hemizygous (Sod2+/−) were examined to assess levels of oxidative stress markers 4-hydroxy-2-nonenal and heme oxygenase-1. Sod2 reduction in young hAPP mice resulted in significantly increased oxidative stress in the pyramidal neurons of the hippocampus. Interestingly, while differences resulting from hAPP expression or Sod2 reduction were not apparent in the neurons in old mice, oxidative stress was increased in astrocytes in old, but not young hAPP mice with either Sod2+/+ or Sod2+/−. Our study shows the specific changes in oxidative stress and the causal relationship with the pathological progression of these mice. These results suggest that the early neuronal susceptibility to oxidative stress in the hAPP/Sod2+/− mice may contribute to the pathological and behavioral changes seen in this animal model

    Endogenous myoglobin in human breast cancer is a hallmark of luminal cancer phenotype

    Get PDF
    BACKGROUND: We aimed to clarify the incidence and the clinicopathological value of non-muscle myoglobin (Mb) in a large cohort of non-invasive and invasive breast cancer cases. METHODS: Matched pairs of breast tissues from 10 patients plus 17 breast cell lines were screened by quantitative PCR for Mb mRNA. In addition, 917 invasive and 155 non-invasive breast cancer cases were analysed by immunohistochemistry for Mb expression and correlated to clinicopathological parameters and basal molecular characteristics including oestrogen receptor-alpha (ERalpha)/progesteron receptor (PR)/HER2, fatty acid synthase (FASN), hypoxia-inducible factor-1alpha (HIF-1alpha), HIF-2alpha, glucose transporter 1 (GLUT1) and carbonic anhydrase IX (CAIX). The spatial relationship of Mb and ERalpha or FASN was followed up by double immunofluorescence. Finally, the effects of estradiol treatment and FASN inhibition on Mb expression in breast cancer cells were analysed. RESULTS: Myoglobin mRNA was found in a subset of breast cancer cell lines; in microdissected tumours Mb transcript was markedly upregulated. In all, 71% of tumours displayed Mb protein expression in significant correlation with a positive hormone receptor status and better prognosis. In silico data mining confirmed higher Mb levels in luminal-type breast cancer. Myoglobin was also correlated to FASN, HIF-2alpha and CAIX, but not to HIF-1alpha or GLUT1, suggesting hypoxia to participate in its regulation. Double immunofluorescence showed a cellular co-expression of ERalpha or FASN and Mb. In addition, Mb levels were modulated on estradiol treatment and FASN inhibition in a cell model. CONCLUSION: We conclude that in breast cancer, Mb is co-expressed with ERalpha and co-regulated by oestrogen signalling and can be considered a hallmark of luminal breast cancer phenotype. This and its possible new role in fatty acid metabolism may have fundamental implications for our understanding of Mb in solid tumours

    Cytoskeletal control of B cell responses to antigens.

    Get PDF
    The actin cytoskeleton is essential for cell mechanics and has increasingly been implicated in the regulation of cell signalling. In B cells, the actin cytoskeleton is extensively coupled to B cell receptor (BCR) signalling pathways, and defects of the actin cytoskeleton can either promote or suppress B cell activation. Recent insights from studies using single-cell imaging and biophysical techniques suggest that actin orchestrates BCR signalling at the plasma membrane through effects on protein diffusion and that it regulates antigen discrimination through the biomechanics of immune synapses. These mechanical functions also have a role in the adaptation of B cell subsets to specialized tasks during antibody responses

    C/EBPβ Promotes Transition from Proliferation to Hypertrophic Differentiation of Chondrocytes through Transactivation of p57Kip2

    Get PDF
    BACKGROUND: Although transition from proliferation to hypertrophic differentiation of chondrocytes is a crucial step for endochondral ossification in physiological skeletal growth and pathological disorders like osteoarthritis, the underlying mechanism remains an enigma. This study investigated the role of the transcription factor CCAAT/enhancer-binding protein beta (C/EBPbeta) in chondrocytes during endochondral ossification. METHODOLOGY/PRINCIPAL FINDINGS: Mouse embryos with homozygous deficiency in C/EBPbeta (C/EBPbeta-/-) exhibited dwarfism with elongated proliferative zone and delayed chondrocyte hypertrophy in the growth plate cartilage. In the cultures of primary C/EBPbeta-/- chondrocytes, cell proliferation was enhanced while hypertrophic differentiation was suppressed. Contrarily, retroviral overexpression of C/EBPbeta in chondrocytes suppressed the proliferation and enhanced the hypertrophy, suggesting the cell cycle arrest by C/EBPbeta. In fact, a DNA cell cycle histogram revealed that the C/EBPbeta overexpression caused accumulation of cells in the G0/G1 fraction. Among cell cycle factors, microarray and real-time RT-PCR analyses have identified the cyclin-dependent kinase inhibitor p57(Kip2) as the transcriptional target of C/EBPbeta. p57(Kip2) was co-localized with C/EBPbeta in late proliferative and pre-hypertrophic chondrocytes of the mouse growth plate, which was decreased by the C/EBPbeta deficiency. Luciferase-reporter and electrophoretic mobility shift assays identified the core responsive element of C/EBPbeta in the p57(Kip2) promoter between -150 and -130 bp region containing a putative C/EBP motif. The knockdown of p57(Kip2) by the siRNA inhibited the C/EBPbeta-induced chondrocyte hypertrophy. Finally, when we created the experimental osteoarthritis model by inducing instability in the knee joints of adult mice of wild-type and C/EBPbeta+/- littermates, the C/EBPbeta insufficiency caused resistance to joint cartilage destruction. CONCLUSIONS/SIGNIFICANCE: C/EBPbeta transactivates p57(Kip2) to promote transition from proliferation to hypertrophic differentiation of chondrocytes during endochondral ossification, suggesting that the C/EBPbeta-p57(Kip2) signal would be a therapeutic target of skeletal disorders like growth retardation and osteoarthritis
    • …
    corecore