26 research outputs found

    The biocompatibility of titanium in a buffer solution: compared effects of a thin film of TiO2 deposited by MOCVD and of collagen deposited from a gel

    Get PDF
    This study aims at evaluating the biocompatibility of titanium surfaces modified according two different ways: (i) deposition of a bio-inert, thin film of rutile TiO2 by chemical vapour deposition (MOCVD), and (ii) biochemical treatment with collagen gel, in order to obtain a bio-interactive coating. Behind the comparison is the idea that either the bio-inert or the bio-active coating has specific advantages when applied to implant treatment, such as the low price of the collagen treatment for instance. The stability in buffer solution was evaluated by open circuit potential (OCP) for medium time and cyclic voltametry. The OCP stabilized after 5104 min for all the specimens except the collagen treated sample which presented a stable OCP from the first minutes. MOCVD treated samples stabilized to more electropositive values. Numeric results were statistically analysed to obtain the regression equations for long time predictable evolution. The corrosion parameters determined from cyclic curves revealed that the MOCVD treatment is an efficient way to improve corrosion resistance. Human dermal fibroblasts were selected for cell culture tests, taking into account that these cells are present in all bio-interfaces, being the main cellular type of connective tissue. The cells grew on either type of surface without phenotype modification. From the reduction of yellow, water-soluble 3-(4,5-dimethyldiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT cytotoxicity test), MOCVD treated samples offer better viability than mechanically polished Ti and collagen treated samples as well. Cell spreading, as evaluated from microscope images processed by the program Sigma Scan, showed also enhancement upon surface modification. Depending on the experimental conditions, MOCVD deposited TiO2 exhibits different nanostructures that may influence biological behaviour. The results demonstrate the capacity of integration in simulated physiologic liquids for an implant pretreated by either method

    Characterization of a novel butyrylcholinesterase point mutation (p.Ala34Val), "silent" with mivacurium

    No full text
    © 2014 Elsevier Inc. All rights reserved. Butyrylcholinesterase deficiency is characterized by prolonged apnea after the use of muscle relaxants (suxamethonium or mivarcurium) in patients who have mutations in the BCHE gene. Here, we report a case of prolonged neuromuscular block after administration of mivacurium leading to the discovery of a novel BCHE variant (c.185C>T, p.Ala34Val). Inhibition studies, kinetic analysis and molecular dynamics were undertaken to understand how this mutation remote from the active center determines the "silent" phenotype. Low activity of patient plasma butyrylcholinesterase with butyrylthiocholine (BTC) and benzoylcholine, and values of dibucaine and fluoride numbers fit with a heterozygous enzyme of type atypical/silent. Kinetic analysis with succinyldithiocholine (SCdTC) as the substrate showed that Ala34Val BChE was inactive against this substrate. However, with BTC, the mutant enzyme was active, displaying an unexpected activation by excess substrate. Competitive inhibition of BTC by mivacurium gave a Ki = 1.35 mM consistent with the lack of activity with the related substrate SCdTC, and with the clinical data. Molecular dynamic simulations revealed the mechanism by which mutation Ala34Val determines the silent phenotype: a chain of intramolecular events leads to disruption of the catalytic triad, so that His438 no longer interacts with Ser198, but instead forms hydrogen bonds either with residues Glu197 and Trp82, or peripheral site residue Tyr332. However, at high BTC concentration, initial binding of substrate to the peripheral site triggers restoration of a functional catalytic triad, and activity with BTC

    2002: Atmospheric liquid water retrieval using gated expert neural network

    No full text
    ABSTRACT Gated experts (GE) neural networks have been developed in order to retrieve atmospheric liquid water content over ocean from radiometer data. Gated experts neural networks are statistical models, which can model any general class of function. This paper focuses on the case where the complex transfer functions can be split on different simpler functions in order to improve the accuracy. Two atmospheric quantities are considered: the integrated cloud liquid water (iclw) and the surface rain rate (RR). In the case of iclw, the GE neural network finds two modes, splitting the problem into low and high iclw values. The physical meaning of those modes is discussed. A comparison with a standard regression algorithm and a multilayer perceptron neural network is done on simulated data and an ''indirect comparison'' is done using Special Sensor Microwave Imager (SSM/ I) data. In the case of RR, the focus is on the ability of GE neural networks to perform a classification between rainy and nonrainy situations. Tropical Rainfall Measuring Mission (TRMM) data are used for rain-rate validation: rain-rate retrieval from the GE algorithm applied to actual TRMM Microwave Imager (TMI) measurements are compared with collocated precipitation radar (PR) rain rate

    Characterization of a novel butyrylcholinesterase point mutation (p.Ala34Val), "silent" with mivacurium

    Get PDF
    © 2014 Elsevier Inc. All rights reserved. Butyrylcholinesterase deficiency is characterized by prolonged apnea after the use of muscle relaxants (suxamethonium or mivarcurium) in patients who have mutations in the BCHE gene. Here, we report a case of prolonged neuromuscular block after administration of mivacurium leading to the discovery of a novel BCHE variant (c.185C>T, p.Ala34Val). Inhibition studies, kinetic analysis and molecular dynamics were undertaken to understand how this mutation remote from the active center determines the "silent" phenotype. Low activity of patient plasma butyrylcholinesterase with butyrylthiocholine (BTC) and benzoylcholine, and values of dibucaine and fluoride numbers fit with a heterozygous enzyme of type atypical/silent. Kinetic analysis with succinyldithiocholine (SCdTC) as the substrate showed that Ala34Val BChE was inactive against this substrate. However, with BTC, the mutant enzyme was active, displaying an unexpected activation by excess substrate. Competitive inhibition of BTC by mivacurium gave a Ki = 1.35 mM consistent with the lack of activity with the related substrate SCdTC, and with the clinical data. Molecular dynamic simulations revealed the mechanism by which mutation Ala34Val determines the silent phenotype: a chain of intramolecular events leads to disruption of the catalytic triad, so that His438 no longer interacts with Ser198, but instead forms hydrogen bonds either with residues Glu197 and Trp82, or peripheral site residue Tyr332. However, at high BTC concentration, initial binding of substrate to the peripheral site triggers restoration of a functional catalytic triad, and activity with BTC

    Characterization of a novel butyrylcholinesterase point mutation (p.Ala34Val), "silent" with mivacurium

    No full text
    © 2014 Elsevier Inc. All rights reserved. Butyrylcholinesterase deficiency is characterized by prolonged apnea after the use of muscle relaxants (suxamethonium or mivarcurium) in patients who have mutations in the BCHE gene. Here, we report a case of prolonged neuromuscular block after administration of mivacurium leading to the discovery of a novel BCHE variant (c.185C>T, p.Ala34Val). Inhibition studies, kinetic analysis and molecular dynamics were undertaken to understand how this mutation remote from the active center determines the "silent" phenotype. Low activity of patient plasma butyrylcholinesterase with butyrylthiocholine (BTC) and benzoylcholine, and values of dibucaine and fluoride numbers fit with a heterozygous enzyme of type atypical/silent. Kinetic analysis with succinyldithiocholine (SCdTC) as the substrate showed that Ala34Val BChE was inactive against this substrate. However, with BTC, the mutant enzyme was active, displaying an unexpected activation by excess substrate. Competitive inhibition of BTC by mivacurium gave a Ki = 1.35 mM consistent with the lack of activity with the related substrate SCdTC, and with the clinical data. Molecular dynamic simulations revealed the mechanism by which mutation Ala34Val determines the silent phenotype: a chain of intramolecular events leads to disruption of the catalytic triad, so that His438 no longer interacts with Ser198, but instead forms hydrogen bonds either with residues Glu197 and Trp82, or peripheral site residue Tyr332. However, at high BTC concentration, initial binding of substrate to the peripheral site triggers restoration of a functional catalytic triad, and activity with BTC

    Atmospheric Liquid Water Retrieval Using a Gated Experts Neural Network

    No full text
    Gated experts (GE) neural networks have been developed in order to retrieve atmospheric liquid water content over ocean from radiometer data. Gated experts neural networks are statistical models, which can model any general class of function. This paper focuses on the case where the complex transfer functions can be split on different simpler functions in order to improve the accuracy. Two atmospheric quantities are considered: the integrated cloud liquid water (iclw) and the surface rain rate (RR). In the case of iclw, the GE neural network finds two modes, splitting the problem into low and high iclw values. The physical meaning of those modes is discussed. A comparison with a standard regression algorithm and a multilayer perceptron neural network is done on simulated data and an ‘‘indirect comparison’ ’ is done using Special Sensor Microwave Imager (SSM/ I) data. In the case of RR, the focus is on the ability of GE neural networks to perform a classification between rainy and nonrainy situations. Tropical Rainfall Measuring Mission (TRMM) data are used for rain-rate validation: rain-rate retrieval from the GE algorithm applied to actual TRMM Microwave Imager (TMI) measurements are compared with collocated precipitation radar (PR) rain rate. 1
    corecore