42,892 research outputs found

    Symmetric achromatic low-beta collider interaction region design concept

    Full text link
    We present a new symmetry-based concept for an achromatic low-beta collider interaction region design. A specially-designed symmetric Chromaticity Compensation Block (CCB) induces an angle spread in the passing beam such that it cancels the chromatic kick of the final focusing quadrupoles. Two such CCBs placed symmetrically around an interaction point allow simultaneous compensation of the 1st-order chromaticities and chromatic beam smear at the IP without inducing significant 2nd-order aberrations to the particle trajectory. We first develop an analytic description of this approach and explicitly formulate 2nd-order aberration compensation conditions at the interaction point. The concept is next applied to develop an interaction region design for the ion collider ring of an electron-ion collider. We numerically evaluate performance of the design in terms of momentum acceptance and dynamic aperture. The advantages of the new concept are illustrated by comparing it to the conventional distributed-sextupole chromaticity compensation scheme.Comment: 12 pages, 17 figures, to be submitted to Phys. Rev. ST Accel. Beam

    Surfactant-Mediated Epitaxial Growth of Single-Layer Graphene in an Unconventional Orientation on SiC

    Full text link
    We report the use of a surfactant molecule during the epitaxy of graphene on SiC(0001) that leads to the growth in an unconventional orientation, namely R0∘R0^\circ rotation with respect to the SiC lattice. It yields a very high-quality single-layer graphene with a uniform orientation with respect to the substrate, on the wafer scale. We find an increased quality and homogeneity compared to the approach based on the use of a pre-oriented template to induce the unconventional orientation. Using spot profile analysis low energy electron diffraction, angle-resolved photoelectron spectroscopy, and the normal incidence x-ray standing wave technique, we assess the crystalline quality and coverage of the graphene layer. Combined with the presence of a covalently-bound graphene layer in the conventional orientation underneath, our surfactant-mediated growth offers an ideal platform to prepare epitaxial twisted bilayer graphene via intercalation.Comment: 7 pages, 3 figure

    Fault signature of a flux-switching DC-field generator

    Get PDF
    Paper no. EH-12Flux-switching DC-field (FSDC) machine has the merits of low-cost and flux control ability. Furthermore, this type of machine also possesses the advantage of fault-tolerant capability [1]. However, a few studies have been done on the analyses of fault signatures of this type of machine even though it has two sets of windings [2]. © 2015 IEEE.published_or_final_versio

    An efficient offshore wind-wave hybrid generation system using direct-drive multitoothed rotating and linear machines

    Get PDF
    This paper presents an offshore wind-wave hybrid generation (WWHG) system, which can efficiently harness the offshore wind and wave energy. The key is to use the multitoothed doubly-salient permanent-magnet (MDSPM) machines for serving the rotating generator and the linear generator. Different from the traditional wind or wave generation system, this WWHG system integrates the wind generation part and wave generation part together to directly harness the wind and wave energy without gear box. The system configuration and machine design are analyzed and discussed in detail. Also, the finite-element method is performed to verify the validity of the proposed two machine design. The results tell that the system has the high reliability and can be upgraded to the suitable size for offshore hybrid-source energy conversion in practical application. © 2014 IEEE.published_or_final_versio
    • …
    corecore