84 research outputs found
Evidence for complex order parameter in La_{1.83}Sr_{0.17}CuO_4
The in-plane magnetic field penetration depth (\lambda_{ab}) in
single-crystal La_{1.83}Sr_{0.17}CuO_4 was investigated by means of the
muon-spin rotation (\muSR) technique. The temperature dependence of
\lambda^{-2}_{ab} has an inflection point around 10-15K, suggesting the
presence of two superconducting gaps: a large gap (\Delta_1^d) with d-wave and
a small gap (\Delta_2^s) with s-wave symmetry. The zero-temperature values of
the gaps at \mu_0H=0.02T were found to be \Delta_1^d(0)=8.2(2)meV and
\Delta_2^s(0)=1.57(8)meV.Comment: 5 pages, 3 figure
Muon-spin-rotation measurements of the penetration depth in Li_2Pd_3B
Measurements of the magnetic field penetration depth in the ternary
boride superconductor LiPdB ( K) have been carried out by
means of muon-spin rotation (SR). The absolute values of , the
Ginzburg-Landau parameter , and the first and the second
critical fields at T=0 obtained from SR were found to be
nm, , mT, and
T, respectively. The zero-temperature value of the
superconducting gap 1.31(3) meV was found, corresponding to the
ratio . At low temperatures saturates and
becomes constant below , in agreement with what is expected for
s-wave BCS superconductors. Our results suggest that LiPdB is a s-wave
BCS superconductor with the only one isotropic energy gap.Comment: 6 pages, 7 figure
investigation of the dgat1 k232a and vntr mutations in dairy and dual purpose cattle breeds
AbstractSeveral studies have reported that the centromeric end of bovine chromosome 14 harbours QTL for milk production and composition traits. The acyl-Coenzyme A:diacylglycerol acyltransferase 1 (DGAT1) gene was indicated to be the quantitative trait gene affecting these traits with a major effect on milk fat content. A two bp mutation in exon 8 causing a nonconservative lysine to alanine amino acid substitution at codon 232 (K232A) showed a confirmed effect across breeds with allele K resulting associated with an increase on fat yield, fat percentage and protein percentage while allele A was associated with higher milk yield. Another mutation in the 5' regulatory region of this gene, a variable number of tandem repeat (VNTR) of 18 bp, was suggested to affect fat percentage. The objective of the present work was to investigate the occurrence of the DGAT1 K232A and VNTR polymorphisms in several Italian dairy and dual purpose cattle breeds as a first step to evaluate their effects on milk production trait..
Study of the magnetic penetration depth in RbOs_2O_6
Measurements of the magnetic field penetration depth \lambda in the
pyrochlore superconductor RbOs_2O_6 (T_c\simeq6.3 K) were carried out by means
of the muon-spin-rotation (\muSR) technique. At low temperatures
\lambda^{-2}(T) saturates and becomes constant below T\simeq 0.2T_c, in
agreement with what is expected for weak-coupled s-wave BCS superconductors.
The value of \lambda at T=0 was found to be in the range of 250 nm to 300 nm.
\muSR and equilibrium magnetization measurements both reveal that at low
temperatures is almost (at the level of 10%) independent of the
applied magnetic field. This result suggests that the superconducting energy
gap in RbOs_2O_6 is isotropic.Comment: 8 pages, 9 figure
Mixed order parameter symmetries in cuprate superconductors
The recent observation of an inflection point in the temperature dependence
of the in-plane magnetic field dependence (lambda_ab) is investigated within a
two-band model with coupled order parameters of different symmetries. While the
dominant order parameter has d-wave symmetry, the smaller one is of s-wave
symmetry. Superconductivity is robust in the d-wave channel and induced via
interband interactions in the s-wave subsystem.Comment: 10 pages, 4 figure
Nanoscale Photoluminescence Manipulation in Monolithic Porous Silicon Oxide Microcavity Coated with Rhodamine-Labeled Polyelectrolyte via Electrostatic Nanoassembling
Porous silicon (PSi) is a promising material for future integrated nanophotonics when coupled with guest emitters, still facing challenges in terms of homogenous distribution and nanometric thickness of the emitter coating within the silicon nanostructure. Herein, it is shown that the nanopore surface of a porous silicon oxide (PSiO2) microcavity (MC) can be conformally coated with a uniform nm-thick layer of a cationic light-emitting polyelectrolyte, e.g., poly(allylamine hydrochloride) labeled with Rhodamine B (PAH-RhoB), leveraging the self-tuned electrostatic interaction of the positively-charged PAH-RhoB polymer and negatively-charged PSiO2 surface. It is found that the emission of PAH-RhoB in the PSiO2 MC is enhanced (≈2.5×) and narrowed (≈30×) at the resonant wavelength, compared with that of PAH-RhoB in a non-resonant PSiO2 reference structure. The time-resolved photoluminescence analysis highlights a shortening (≈20%) of the PAH-RhoB emission lifetime in the PSiO2 MC at the resonance versus off-resonance wavelengths, and with respect to the reference structure, thereby proving a significant variation of the radiative decay rate. Remarkably, an experimental Purcell factor Fp = 2.82 is achieved. This is further confirmed by the enhancement of the photoluminescence quantum yield of the PAH-RhoB in the PSiO2 MC with respect to the reference structure. Application of the electrostatic nanoassembling approach to other emitting dyes, nanomaterials, and nanophotonic systems is envisaged
Pressure effects on the transition temperature and the magnetic field penetration depth in the pyrochlore superconductor RbOs_2O_6
We report magnetization measurements under high hydrostatic pressure in the
newly discovered pyrochlore superconductor RbOs_2O_6 (T_c\simeq6.3K at p=0). A
pronounced and {\it positive} pressure effect (PE) on T_c with dT_c/dp
=0.090(1)K/kbar was observed, whereas no PE on the magnetic penetration depth
\lambda was detected. The relative pressure shift of T_c [ dlnT_c/dp \simeq
1.5%/kbar] is comparable with the highest values obtained for highly underdoped
high-temperature cuprate superconductors. Our results suggest that RbOs_2O_6 is
an adiabatic BCS-type superconductor.Comment: 11 pages, 4 figure
Recommended from our members
Bioavailability in soils
The consumption of locally-produced vegetables by humans may be an important exposure pathway for soil contaminants in many urban settings and for agricultural land use. Hence, prediction of metal and metalloid uptake by vegetables from contaminated soils is an important part of the Human Health Risk Assessment procedure. The behaviour of metals (cadmium, chromium, cobalt, copper, mercury, molybdenum, nickel, lead and zinc) and metalloids (arsenic, boron and selenium) in contaminated soils depends to a large extent on the intrinsic charge, valence and speciation of the contaminant ion, and soil properties such as pH, redox status and contents of clay and/or organic matter. However, chemistry and behaviour of the contaminant in soil alone cannot predict soil-to-plant transfer. Root uptake, root selectivity, ion interactions, rhizosphere processes, leaf uptake from the atmosphere, and plant partitioning are important processes that ultimately govern the accumulation ofmetals and metalloids in edible vegetable tissues. Mechanistic models to accurately describe all these processes have not yet been developed, let alone validated under field conditions. Hence, to estimate risks by vegetable consumption, empirical models have been used to correlate concentrations of metals and metalloids in contaminated soils, soil physico-chemical characteristics, and concentrations of elements in vegetable tissues. These models should only be used within the bounds of their calibration, and often need to be re-calibrated or validated using local soil and environmental conditions on a regional or site-specific basis.Mike J. McLaughlin, Erik Smolders, Fien Degryse, and Rene Rietr
- …