3,988 research outputs found
Quantitative autoradiographic evaluation of the influence of protein dose on monoclonal antibody distribution in human ovarian adenocarcinoma xenografts
We studied the effect of monoclonal antibody protein dose on the uniformity of radioiodinated antibody distribution within tumor masses using quantitative autoradiography. Groups ( n = 11–13/group) of athymic nude mice with subcutaneous HTB77 human ovarian carcinoma xenografts were injected intraperitoneally with an 125 I-labeled anticarcinoma-associated antigen murine monoclonal antibody, 5G6.4, using a high or a low protein dose (500 µg or 5 µg). At 6 days post-injection the macroscopic and microscopic intratumoral biodistribution of radiolabeled antibody was determined. The degree of heterogeneity of the labeled antibody distribution within each tumor was quantified and expressed as the coefficient of variation (CV) of the activity levels in serial histological sections. Tumors from mice given the 500-µg protein doses had substantially lower CV values, 0.327±0.027, than did tumors from animals given 5-µg protein doses, 0.458±0.041, ( P = 0.0078), indicating that the higher protein dose resulted in more homogeneous distribution of radioactivity in tumors than did the lower dose. While the percentage of the injected dose reaching the tumor was comparable between groups, injecting the higher dose of protein resulted in significantly lower tumor to non-tumor uptake ratios than those obtained for the lower protein dose. These data indicate, in this system, that to achieve more uniform intratumoral antibody (and radiation for radioimmunotherapy) delivery, a relatively high protein dose must be administered. However, to obtain this increased uniformity, a substantial drop in tumor/background uptake ratios was seen. Quantitative autoradiographic evaluation of human tumor xenografts is a useful method to assess the intratumoral distribution of antibodies.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46859/1/262_2005_Article_BF01789014.pd
The CRESST Dark Matter Search
We present first competitive results on WIMP dark matter using the
phonon-light-detection technique. A particularly strong limit for WIMPs with
coherent scattering results from selecting a region of the phonon-light plane
corresponding to tungsten recoils. The observed count rate in the neutron band
is compatible with the rate expected from neutron background. CRESST is
presently being upgraded with a 66 channel SQUID readout system, a neutron
shield and a muon veto system. This results in a significant improvement in
sensitivity.Comment: 6 pages, 3 figures, to be published in the proceedings of the 5th
International Workshop on the Identification and Detection of Dark Matter IDM
2004, Edinburgh, Sept. 2004, World Scientifi
Positron-molecule interactions: resonant attachment, annihilation, and bound states
This article presents an overview of current understanding of the interaction
of low-energy positrons with molecules with emphasis on resonances, positron
attachment and annihilation. Annihilation rates measured as a function of
positron energy reveal the presence of vibrational Feshbach resonances (VFR)
for many polyatomic molecules. These resonances lead to strong enhancement of
the annihilation rates. They also provide evidence that positrons bind to many
molecular species. A quantitative theory of VFR-mediated attachment to small
molecules is presented. It is tested successfully for selected molecules (e.g.,
methyl halides and methanol) where all modes couple to the positron continuum.
Combination and overtone resonances are observed and their role is elucidated.
In larger molecules, annihilation rates from VFR far exceed those explicable on
the basis of single-mode resonances. These enhancements increase rapidly with
the number of vibrational degrees of freedom. While the details are as yet
unclear, intramolecular vibrational energy redistribution to states that do not
couple directly to the positron continuum appears to be responsible for these
enhanced annihilation rates. Downshifts of the VFR from the vibrational mode
energies have provided binding energies for thirty species. Their dependence
upon molecular parameters and their relationship to positron-atom and
positron-molecule binding energy calculations are discussed. Feshbach
resonances and positron binding to molecules are compared with the analogous
electron-molecule (negative ion) cases. The relationship of VFR-mediated
annihilation to other phenomena such as Doppler-broadening of the gamma-ray
annihilation spectra, annihilation of thermalized positrons in gases, and
annihilation-induced fragmentation of molecules is discussed.Comment: 50 pages, 40 figure
A topological insulator surface under strong Coulomb, magnetic and disorder perturbations
Three dimensional topological insulators embody a newly discovered state of
matter characterized by conducting spin-momentum locked surface states that
span the bulk band gap as demonstrated via spin-resolved ARPES measurements .
This highly unusual surface environment provides a rich ground for the
discovery of novel physical phenomena. Here we present the first controlled
study of the topological insulator surfaces under strong Coulomb, magnetic and
disorder perturbations. We have used interaction of iron, with a large Coulomb
state and significant magnetic moment as a probe to \textit{systematically test
the robustness} of the topological surface states of the model topological
insulator BiSe. We observe that strong perturbation leads to the
creation of odd multiples of Dirac fermions and that magnetic interactions
break time reversal symmetry in the presence of band hybridization. We also
present a theoretical model to account for the altered surface of BiSe.
Taken collectively, these results are a critical guide in manipulating
topological surfaces for probing fundamental physics or developing device
applications.Comment: 14 pages, 4 Figures. arXiv admin note: substantial text overlap with
arXiv:1009.621
Efficient Symmetry Reduction and the Use of State Symmetries for Symbolic Model Checking
One technique to reduce the state-space explosion problem in temporal logic
model checking is symmetry reduction. The combination of symmetry reduction and
symbolic model checking by using BDDs suffered a long time from the
prohibitively large BDD for the orbit relation. Dynamic symmetry reduction
calculates representatives of equivalence classes of states dynamically and
thus avoids the construction of the orbit relation. In this paper, we present a
new efficient model checking algorithm based on dynamic symmetry reduction. Our
experiments show that the algorithm is very fast and allows the verification of
larger systems. We additionally implemented the use of state symmetries for
symbolic symmetry reduction. To our knowledge we are the first who investigated
state symmetries in combination with BDD based symbolic model checking
Strong Pinning in High Temperature Superconductors
Detailed measurements of the critical current density jc of YBa2Cu3O7 films
grown by pulsed laser deposition reveal the increase of jc as function of the
filmthickness. Both this thickness dependence and the field dependence of the
critical current are consistently described using a generalization of the
theory of strong pinning of Ovchinnikov and Ivlev [Phys. Rev. B 43, 8024
(1991)]. From the model, we deduce values of the defect density (10^21 m^-3)
and the elementary pinning force, which are in good agreement with the
generally accepted values for Y2O3-inclusions. In the absence of clear evidence
that the critical current is determined by linear defects or modulations of the
film thickness, our model provides an alternative explanation for the rather
universal field dependence of the critical current density found in YBa2Cu3O7
films deposited by different methods.Comment: 11 pages; 8 Figures; Published Phys. Rev. B 66, 024523 (2002
Aspects of harmonisation of individual monitoring for external radiation in Europe: Conclusions of a EURADOS action
Following the publication of the EU Council Directive 96/29, EURADOS coordinated two working groups (WGs) for promoting the process of harmonisation on individual monitoring of occupationally exposed persons in Europe. An overview of the major findings of the second WG is presented. Information on the technical and quality standards and on the accreditation and approval procedures has been compiled. The catalogue of dosimetric services has been updated and extended. An overview of national regulations and standards for protection from radon and other natural sources in workplaces has been made, attempting to combine the results from individual monitoring for external, internal and workplace monitoring. A first status description of the active personal dosemeters, including legislative and technical information, and their implementation has been made. The importance of practical factors on the uncertainty in the dose measurement has been estimated. Even if a big progress has been made towards harmonisation, there is still work to be don
Seasonal Distribution, Aggregation, and Habitat Selection of Common Carp in Clear Lake, Iowa
The common carp Cyprinus carpio is widely distributed and frequently considered a nuisance species outside its native range. Common carp are abundant in Clear Lake, Iowa, where their presence is both a symptom of degradation and an impediment to improving water quality and the sport fishery. We used radiotelemetry to quantify seasonal distribution, aggregation, and habitat selection of adult and subadult common carp in Clear Lake during 2005–2006 in an effort to guide future control strategies. Over a 22-month period, we recorded 1,951 locations of 54 adults and 60 subadults implanted with radio transmitters. Adults demonstrated a clear tendency to aggregate in an offshore area during the late fall and winter and in shallow, vegetated areas before and during spring spawning. Late-fall and winter aggregations were estimated to include a larger percentage of the tracked adults than spring aggregations. Subadults aggregated in shallow, vegetated areas during the spring and early summer. Our study, when considered in combination with previous research, suggests repeatable patterns of distribution, aggregation, and habitat selection that should facilitate common carp reduction programs in Clear Lake and similar systems
Prospects for at CERN in NA62
The NA62 experiment will begin taking data in 2015. Its primary purpose is a
10% measurement of the branching ratio of the ultrarare kaon decay , using the decay in flight of kaons in an unseparated
beam with momentum 75 GeV/c.The detector and analysis technique are described
here.Comment: 8 pages for proceedings of 50 Years of CP
- …