165 research outputs found

    Role of cardiovascular magnetic resonance in the guidelines of the European Society of Cardiology

    Get PDF
    BACKGROUND: Despite common enthusiasm for cardiovascular magnetic resonance (CMR), its application in Europe is quite diverse. Restrictions are attributed to a number of factors, like limited access, deficits in training, and incomplete reimbursement. Aim of this study is to perform a systematic summary of the representation of CMR in the guidelines of the European Society of Cardiology (ESC). METHODS: Twenty-nine ESC guidelines were screened for the terms "magnetic", "MRI", "CMR", "MR" and "imaging". As 3 topics were published twice (endocarditis, pulmonary hypertension, NSTEMI), 26 guidelines were finally included. MRI in the context of non-cardiovascular examinations was not recognized. The main CMR-related conclusions and, if available, the level of evidence and the class of recommendation were extracted. RESULTS: Fourteen of the 26 guidelines (53.8 %) contain specific recommendations regarding the use of CMR. Nine guidelines (34.6 %) mention CMR in the text, and 3 (11.5 %) do not mention CMR. The 14 guidelines with recommendations regarding the use of CMR contain 39 class-I recommendations, 12 class-IIa recommendations, 10 class-IIb recommendations and 2 class-III recommendations. Most of the recommendations have evidence level C (41/63; 65.1 %), followed by level B (16/63; 25.4 %) and level A (6/63; 9.5 %). The four guidelines, which absolutely contained most recommendations for CMR, were stable coronary artery disease (n = 14), aortic diseases (n = 9), HCM (n = 7) and myocardial revascularization (n = 7). CONCLUSIONS: CMR is represented in the majority of the ESC guidelines. They contain many recommendations in favour of the use of CMR in specific scenarios. Issues regarding access, training and reimbursement have to be solved to offer CMR to patients in accordance with the ESC guidelines

    Cardiovascular magnetic resonance in the guidelines of the European Society of Cardiology: a comprehensive summary and update

    Get PDF
    BACKGROUND: Cardiovascular magnetic resonance (CMR) has been established as a valuable tool in clinical and scientific cardiology. This study summarizes the current evidence and role of CMR in the guidelines of the European Society of Cardiology (ESC) and is an update of a former guideline analysis. METHODS: Since the last guideline analysis performed in 2015, 28 new ESC guideline documents have been published. Twenty-seven ESC practice guidelines are currently in use. They were screened regarding CMR in the text, tables and figures. The main CMR-related sentences and recommendations were extracted. RESULTS: Nineteen of the 27 guidelines (70.4%) contain relevant text passages regarding CMR in the text and include 92 specific recommendations regarding the use of CMR. Seven guidelines (25.9%) mention CMR in the text, and 1 (3.7%, dyslipidemia) does not mention CMR. The 19 guidelines with recommendations regarding the use of CMR contain 40 class-I recommendations (43.5%), 28 class-IIa recommendations (30.4%), 19 class-IIb recommendations (20.7%) and 5 class-III recommendations (5.4%). Most of the recommendations have evidence level C (56/92; 60.9%), followed by level B (34/92; 37.0%) and level A (2/92; 2.2%). Twenty-one recommendations refer to the field of cardiomyopathies, 21 recommendations to stress perfusion imaging, 20 recommendations to vascular assessment, 12 to myocardial tissue characterization in general, 8 to left and right ventricular function assessment, 5 to the pericardium and 5 to myocarditis. CONCLUSIONS: CMR is integral part of the majority of the ESC guidelines. Its representation in the guidelines has increased since the last analysis from 2015, now comprising 92 instead of formerly 63 specific recommendations. To enable patient management in accordance to the ESC guidelines, CMR must become more widely available

    Variability and homogeneity of cardiovascular magnetic resonance myocardial T2-mapping in volunteers compared to patients with edema

    Get PDF
    BACKGROUND: The aim of the study was to test the reproducibility and variability of myocardial T2 mapping in relation to sequence type and spatial orientation in a large group of healthy volunteers. For control T2 mapping was also applied in patients with true edema. Cardiovascular magnetic resonance (CMR) T2-mapping has potential for the detection and quantification of myocardial edema. Clinical experience is limited so far. The variability and potential pitfalls in broad application are unknown. METHODS: Healthy volunteers (n = 73, 35 +/- 13 years) and patients with edema (n = 28, 55 +/- 17 years) underwent CMR at 1.5 T. Steady state free precession (SSFP) cine loops and T2-weighted spin echo images were obtained. In patients, additionally late gadolinium enhancement images were acquired. We obtained T2 maps in midventricular short axis (SAX) and four-chamber view (4CV) based on images with T2 preparation times of 0, 24, 55 ms and compared fast low angle shot (FLASH) and SSFP readout. 10 volunteers were scanned twice on separate days. Two observers analysed segmental and global T2 per slice. RESULTS: In volunteers global myocardial T2 systematically differed depending on image orientation and sequence (FLASH 52 +/- 5 vs. SSFP 55 +/- 5 ms in SAX and 57 +/- 6 vs. 59 +/- 6 ms in 4CV; p /= 70 ms. Mean intraobserver variability was 1.07 +/- 1.03 ms (r = 0.94); interobserver variability was 1.6 +/- 1.5 ms (r = 0.87). The coefficient of variation for repeated scans was 7.6% for SAX and 6.6% for 4CV. Mapping revealed focally increased T2 (73 +/- 9 vs. 51 +/- 3 ms in remote myocardium; p < 0.0001) in all patients with edema. CONCLUSIONS: Myocardial T2 mapping is technically feasible and highly reproducible. It can detect focal edema und differentiate it from normal myocardium. Increased T2 was found in some volunteers most likely due to partial volume and residual motion

    Prospective, randomized comparison of gadopentetate and gadobutrol to assess chronic myocardial infarction applying cardiovascular magnetic resonance

    Get PDF
    BACKGROUND: We hypothesized that the contrast medium gadobutrol is not inferior compared to Gd-DTPA in identifying and quantifying ischemic late gadolinium enhancement (LGE), even by using a lower dose. METHODS: We prospectively enrolled 30 patients with chronic myocardial infarction as visualized by LGE during clinical routine scan at 1.5 T with 0.20 mmol/kg Gd-DTPA. Participants were randomized to either 0.15 mmol/kg gadobutrol (group A) or 0.10 mmol/kg gadobutrol (group B). CMR protocol was identical in both exams. LGE was quantified using a semiautomatic approach. Signal intensities of scar, remote myocardium, blood and air were measured. Signal to noise (SNR) and contrast to noise ratios (CNR) were calculated. RESULTS: Signal intensities were not different between Gd-DTPA and gadobutrol in group A, whereas significant differences were detected in group B. SNR of injured myocardium (53.5+/-21.4 vs. 30.1+/-10.4, p = 0.0001) and CNR between injured and remote myocardium (50.3+/-20.3 vs. 27.3+/-9.3, p < 0.0001) were lower in gadobutrol. Infarct size was lower in both gadobutrol groups compared to Gd-DTPA (group A: 16.8+/-10.2 g vs. 12.8+/-6.8 g, p = 0.03; group B: 18.6+/-12.0 g vs. 14.0+/-9.9 g, p = 0.0016). CONCLUSIONS: Taking application of 0.2 mmol/kg Gd-DTPA as the reference, the delineation of infarct scar was similar with 0.15 mmol/kg gadobutrol, whereas the use 0.10 mmol/kg gadobutrol led to reduced tissue contrast. TRIAL REGISTRATION: The study had been registered under EudraCT Number: 2010-020775-22 . Registration date: 2010.08.10

    Myocardial T(1) and T(2) mapping at 3 T: reference values, influencing factors and implications

    Get PDF
    BACKGROUND: Myocardial T1 and T2 mapping using cardiovascular magnetic resonance (CMR) are promising to improve tissue characterization and early disease detection. This study aimed at analyzing the feasibility of T1 and T2 mapping at 3 T and providing reference values. METHODS: Sixty healthy volunteers (30 males/females, each 20 from 20--39 years, 40--59 years, 60--80 years) underwent left-ventricular T1 and T2 mapping in 3 short-axis slices at 3 T. For T2 mapping, 3 single-shot steady-state free precession (SSFP) images with different T2 preparation times were acquired. For T1 mapping, modified Look-Locker inversion recovery technique with 11 single shot SSFP images was used before and after injection of gadolinium contrast. T1 and T2 relaxation times were quantified for each slice and each myocardial segment. RESULTS: Mean T2 and T1 (pre-/post-contrast) times were: 44.1 ms/1157.1 ms/427.3 ms (base), 45.1 ms/1158.7 ms/411.2 ms (middle), 46.9 ms/1180.6 ms/399.7 ms (apex). T2 and pre-contrast T1 increased from base to apex, post-contrast T1 decreased. Relevant inter-subject variability was apparent (scatter factor 1.08/1.05/1.11 for T2/pre-contrast T1/post-contrast T1). T2 and post-contrast T1 were influenced by heart rate (p < 0.0001, p = 0.0020), pre-contrast T1 by age (p < 0.0001). Inter- and intra-observer agreement of T2 (r = 0.95; r = 0.95) and T1 (r = 0.91; r = 0.93) were high. T2 maps: 97.7% of all segments were diagnostic and 2.3% were excluded (susceptibility artifact). T1 maps (pre-/post-contrast): 91.6%/93.9% were diagnostic, 8.4%/6.1% were excluded (predominantly susceptibility artifact 7.7%/3.2%). CONCLUSIONS: Myocardial T2 and T1 reference values for the specific CMR setting are provided. The diagnostic impact of the high inter-subject variability of T2 and T1 relaxation times requires further investigation

    Subclinical myocardial injury in patients with Facioscapulohumeral muscular dystrophy 1 and preserved ejection fraction - assessment by cardiovascular magnetic resonance

    Get PDF
    Background: Facioscapulohumeral muscular dystrophy type 1 (FSHD1) is an autosomal dominant and the third most common inherited muscle disease. Cardiac involvement is currently described in several muscular dystrophies (MD), but there are conflicting reports in FSHD1. Mostly, FSHD1 is recognized as MD with infrequent cardiac involvement, but sudden cardiac deaths are reported in single cases. The aim of this study is to investigate whether subclinical cardiac involvement in FSHD1 patients is detectable in preserved left ventricular systolic function applying cardiovascular magnetic resonance (CMR). Methods: We prospectively included patients with genetically confirmed FSHD1 (n = 52, 48 ± 15 years) and compared them with 29 healthy age-matched controls using a 1.5 T CMR scanner. Myocardial tissue differentiation was performed qualitatively using focal fibrosis imaging (late gadolinium enhancement (LGE)), fat imaging (multi-echo sequence for fat/water-separation) and parametric T2- and T1-mapping for quantifying inflammation and diffuse fibrosis. Extracellular volume fraction was calculated. A 12-lead electrocardiogram and 24-h Holter were performed for the assessment of MD-specific Groh-criteria and arrhythmia. Results: Focal fibrosis by LGE was present in 13 patients (25%,10 men), fat infiltration in 7 patients (13%,5 men). T2 values did not differ between FSHD1 and healthy controls. Native T1 mapping revealed significantly higher values in patients (global native myocardial T1 values basal: FSHD1: 1012 ± 26 ms vs. controls: 985 ± 28 ms, p < 0.01, medial FSHD1: 994 ± 37 ms vs. controls: 982 ± 28 ms, p = 0.028). This was also evident in regions adjacent to focal fibrosis, indicating diffuse fibrosis. Groh-criteria were positive in 1 patient. In Holter, arrhythmic events were recorded in 10/43 subjects (23%). Conclusions: Patients with FSHD1 and preserved left ventricular ejection fraction present focal and diffuse myocardial injury. Longitudinal multi-center trials are needed to define the impact of myocardial changes as well as a relation between myocardial injury and arrhythmias on long-term prognosis and therapeutic decision-making. Trial Registration: ISRCTN registry with study ID ISRCTN13744381

    Rapid parametric mapping of the longitudinal relaxation time t1 using two-dimensional variable flip angle magnetic resonance imaging at 1.5 Tesla, 3 Tesla, and 7 Tesla

    Get PDF
    INTRODUCTION: Visual but subjective reading of longitudinal relaxation time (T1) weighted magnetic resonance images is commonly used for the detection of brain pathologies. For this non-quantitative measure, diagnostic quality depends on hardware configuration, imaging parameters, radio frequency transmission field (B1+) uniformity, as well as observer experience. Parametric quantification of the tissue T1 relaxation parameter offsets the propensity for these effects, but is typically time consuming. For this reason, this study examines the feasibility of rapid 2D T1 quantification using a variable flip angles (VFA) approach at magnetic field strengths of 1.5 Tesla, 3 Tesla, and 7 Tesla. These efforts include validation in phantom experiments and application for brain T1 mapping. METHODS: T1 quantification included simulations of the Bloch equations to correct for slice profile imperfections, and a correction for B1+. Fast gradient echo acquisitions were conducted using three adjusted flip angles for the proposed T1 quantification approach that was benchmarked against slice profile uncorrected 2D VFA and an inversion-recovery spin-echo based reference method. Brain T1 mapping was performed in six healthy subjects, one multiple sclerosis patient, and one stroke patient. RESULTS: Phantom experiments showed a mean T1 estimation error of (-63±1.5)% for slice profile uncorrected 2D VFA and (0.2±1.4)% for the proposed approach compared to the reference method. Scan time for single slice T1 mapping including B1+ mapping could be reduced to 5 seconds using an in-plane resolution of (2×2) mm2, which equals a scan time reduction of more than 99% compared to the reference method. CONCLUSION: Our results demonstrate that rapid 2D T1 quantification using a variable flip angle approach is feasible at 1.5T/3T/7T. It represents a valuable alternative for rapid T1 mapping due to the gain in speed versus conventional approaches. This progress may serve to enhance the capabilities of parametric MR based lesion detection and brain tissue characterization

    Quantification of myocardial strain assessed by cardiovascular magnetic resonance feature tracking in healthy subjects - influence of segmentation and analysis software

    Get PDF
    OBJECTIVES: Quantification of myocardial deformation by feature tracking is of growing interest in cardiovascular magnetic resonance. It allows the assessment of regional myocardial function based on cine images. However, image acquisition, post-processing, and interpretation are not standardized. We aimed to assess the influence of segmentation procedure such as slice selection and different types of analysis software on values and quantification of myocardial strain in healthy adults. METHODS: Healthy volunteers were retrospectively analyzed. Post-processing was performed using CVI(42) and TomTec. Longitudinal and radial(Long axis (LAX)) strain were quantified using 4-chamber-view, 3-chamber-view, and 2-chamber-view. Circumferential and radialShort axis (SAX) strain were assessed in basal, midventricular, and apical short-axis views and using full coverage. Global and segmental strain values were compared to each other regarding their post-processing approach and analysis software package. RESULTS: We screened healthy volunteers studied at 1.5 or 3.0 T and included 67 (age 44.3 ± 16.3 years, 31 females). Circumferential and radial(SAX) strain values were different between a full coverage approach vs. three short slices (- 17.6 ± 1.8% vs. - 19.2 ± 2.3% and 29.1 ± 4.8% vs. 34.6 ± 7.1%). Different analysis software calculated significantly different strain values. Within the same vendor, different field strengths (- 17.0 ± 2.1% at 1.5 T vs. - 17.0 ± 1.7% at 3 T, p = 0.845) did not influence the calculated global longitudinal strain (GLS), and were similar in gender (- 17.4 ± 2.0% in females vs. - 16.6 ± 1.8% in males, p = 0.098). Circumferential and radial strain were different in females and males (circumferential strain - 18.2 ± 1.7% vs. - 17.1 ± 1.8%, p = 0.029 and radial strain 30.7 ± 4.7% vs. 27.8 ± 4.6%, p = 0.047). CONCLUSIONS: Myocardial deformation assessed by feature tracking depends on segmentation procedure and type of analysis software. Circumferential(SAX) and radial(SAX) depend on the number of slices used for feature tracking analysis. As known from other imaging modalities, GLS seems to be the most stable parameter. During follow-up studies, standardized conditions should be warranted

    Native myocardial T1 time can predict development of subsequent anthracycline-induced cardiomyopathy

    Get PDF
    Aims: This study aims to assess subclinical changes in functional and morphological myocardial magnetic resonance parameters very early into an anthracycline treatment, which may predict subsequent development of anthracycline-induced cardiomyopathy (aCMP). Methods and results: Thirty sarcoma patients with planned anthracycline-based chemotherapy (360-400 mg/m doxorubicin-equivalent) were recruited. Median treatment time was 19.1 ± 2.1 weeks. Enrolled individuals received three cardiovascular magnetic resonance studies (before treatment, 48 h after first anthracycline treatment, and upon completion of treatment). Native T1 mapping (modified Look-Locker inversion recovery 5s(3s)3s), T2 mapping, and extracellular volume maps were acquired in addition to a conventional cardiovascular magnetic resonance with steady-state free precession cine imaging at 1.5 T. Patients were given 0.2 mmol/kg gadoteridol for extracellular volume quantification and late gadolinium enhancement imaging. Development of relevant aCMP was defined as drop of left ventricular ejection fraction (LVEF) by >10%. For analysis, 23 complete data sets were available. Nine patients developed aCMP with LVEF reduction >10% until end of chemotherapy. Baseline LVEF was not different between patients with and without subsequent aCMP. When assessed 48 h after first dose of antracyclines, patients with subsequent aCMP had significantly lower native myocardial T1 times compared with before therapy (1002.0 ± 37.9 vs. 956.5 ± 29.2 ms, P  0.05). Patients with aCMP had decreased left ventricular mass upon completion of therapy (86.9 ± 24.5 vs. 81.1 ± 22.3 g; P = 0.02), while patients without aCMP did not show a change in left ventricular mass (81.8 ± 21.0 vs. 79.2 ± 18.1 g; P > 0.05). No patient developed new myocardial scars or compact myocardial fibrosis under chemotherapy. Conclusions: Early decrease of T1 times 48 h after first treatment with anthracyclines can predict the development of subsequent aCMP after completion of chemotherapy

    Current T(1) and T(2) mapping techniques applied with simple thresholds cannot discriminate acute from chronic myocadial infarction on an individual patient basis: a pilot study

    Get PDF
    BACKGROUND: Studying T1- and T2-mapping for discrimination of acute from chronic myocardial infarction (AMI, CMI). METHODS: Eight patients with AMI underwent CMR at 3 T acutely and after >3 months. Imaging techniques included: T2-weighted imaging, late enhancement (LGE), T2-mapping, native and post-contrast T1-mapping. Myocardial T2- and T1-relaxation times were determined for every voxel. Abnormal voxels as defined by having T2- and T1-values beyond a predefined threshold (T2 > 50 ms, native T1 > 1250 ms and post-contrast T1 delete acute infarction; unfortunately this is not possible in your web interface) acute infarction only in half of the subjects. Abnormal T2-values were also present in subjects with CMI, thereby matching the chronically infarcted territory in some. Abnormal native T1 times were present in voxels with AMI in 5/8 subjects, but also remote from the infarcted territory in four. In CMI, abnormal native T1 values corresponded with infarcted voxels, but were also abnormal remote from the infarcted territory. Voxels with abnormal post-contrast T1-relaxation times agreed well with LGE in AMI and CMI. CONCLUSIONS: In this pilot-study, T2- and T1-mapping with simple thresholds did not facilitate the discrimination of AMI and CMI
    • …
    corecore