3,068 research outputs found

    WHIZARD 2.2 for Linear Colliders

    Full text link
    We review the current status of the WHIZARD event generator. We discuss, in particular, recent improvements and features that are relevant for simulating the physics program at a future Linear Collider.Comment: Talk presented at the International Workshop on Future Linear Colliders (LCWS13), Tokyo, Japan, 11-15 November 201

    Gyrokinetic and kinetic particle-in-cell simulations of guide-field reconnection. I: Macroscopic effects of the electron flows

    Full text link
    In this work, we compare gyrokinetic (GK) and fully kinetic Particle-in-Cell (PIC) simulations of magnetic reconnection in the limit of strong guide field. In particular, we analyze the limits of applicability of the GK plasma model compared to a fully kinetic description of force free current sheets for finite guide fields (bgb_g). Here we report the first part of an extended comparison, focusing on the macroscopic effects of the electron flows. For a low beta plasma (βi=0.01\beta_i=0.01), it is shown that both plasma models develop magnetic reconnection with similar features in the secondary magnetic islands if a sufficiently high guide field (bg≳30b_g\gtrsim 30) is imposed in the kinetic PIC simulations. Outside of these regions, in the separatrices close to the X points, the convergence between both plasma descriptions is less restrictive (bg≳5b_g\gtrsim 5). Kinetic PIC simulations using guide fields bg≲30b_g \lesssim 30 reveal secondary magnetic islands with a core magnetic field and less energetic flows inside of them in comparison to the GK or kinetic PIC runs with stronger guide fields. We find that these processes are mostly due to an initial shear flow absent in the GK initialization and negligible in the kinetic PIC high guide field regime, in addition to fast outflows on the order of the ion thermal speed that violate the GK ordering. Since secondary magnetic islands appear after the reconnection peak time, a kinetic PIC/GK comparison is more accurate in the linear phase of magnetic reconnection. For a high beta plasma (βi=1.0\beta_i=1.0) where reconnection rates and fluctuations levels are reduced, similar processes happen in the secondary magnetic islands in the fully kinetic description, but requiring much lower guide fields (bg≲3b_g\lesssim 3).Comment: 18 pages, 13 figures. Revised to match with the published version in Physics of Plasma

    QCD NLO with Powheg matching and top threshold matching in WHIZARD

    Full text link
    We present the status of the automation of NLO processes within the event generator WHIZARD. The program provides an automated FKS subtraction and phase space integration over the FKS regions, while the (QCD) NLO matrix element is accessed via the Binoth Les Houches Interface from an externally linked one-loop program. Massless and massive test cases and validation are shown for several e+e- processes. Furthermore, we discuss work in progress and future plans. The second part covers the matching of the NRQCD prediction with NLL threshold resummation to the NLO continuum top pair production at lepton colliders. Both the S-wave and P-wave production of the top pair are taken into account in the resummation. The inclusion in WHIZARD allows to study more exclusive observables than just the total cross section and automatically accounts for important electroweak and relativistic corrections in the threshold region.Comment: 9 pages, 3 figures, Talk given at 12th International Symposium on Radiative Corrections (Radcor 2015) and LoopFest XIV (Radiative Corrections for the LHC and Future Colliders); v2: reference adde

    C II abundances in early-type stars: solution to a notorious non-LTE problem

    Full text link
    We address a long-standing discrepancy between non-LTE analyses of the prominent C II 4267 and 6578/82 A multiplets in early-type stars. A comprehensive non-LTE model atom of C II is constructed based on critically selected atomic data. This model atom is used for an abundance study of six apparently slow-rotating main-sequence and giant early B-type stars. High-resolution and high-S/N spectra allow us to derive highly consistent abundances not only from the classical features but also from up to 18 further C II lines in the visual - including two so far unreported emission features equally well reproduced in non-LTE. These results require the stellar atmospheric parameters to be determined with care. A homogeneous (slightly) sub-solar present-day carbon abundance from young stars in the solar vicinity (in associations and in the field) of log C/H +12= 8.29+/-0.03 is indicated.Comment: 8 pages, 5 figure

    Analytic approximations to the phase diagram of the Jaynes-Cummings-Hubbard model with application to ion chains

    Full text link
    We discuss analytic approximations to the ground state phase diagram of the homogeneous Jaynes-Cummings-Hubbard (JCH) Hamiltonian with general short-range hopping. The JCH model describes e.g. radial phonon excitations of a linear chain of ions coupled to an external laser field tuned to the red motional sideband with Coulomb mediated hopping or an array of high-QQ coupled cavities containing a two-level atom and photons. Specifically we consider the cases of a linear array of coupled cavities and a linear ion chain. We derive approximate analytic expressions for the boundaries between Mott-insulating and superfluid phases and give explicit expressions for the critical value of the hopping amplitude within the different approximation schemes. In the case of an array of cavities, which is represented by the standard JCH model we compare both approximations to numerical data from density-matrix renormalization group (DMRG) calculations.Comment: 9 pages, 5 figures, extended and corrected second versio

    The Abundance of Interstellar Nitrogen

    Get PDF
    Using the HST Goddard High Resolution Spectrograph (GHRS), we have obtained high S/N echelle observations of the weak interstellar N I 1160, 1161 A absorption doublet toward the stars Gamma Cas, Lambda Ori, Iota Ori, Kappa Ori, Delta Sco, and Kappa Sco. In combination with a previous GHRS measurement of N I toward Zeta Oph, these new observations yield a mean interstellar gas phase nitrogen abundance (per 106^6 H atoms) of 106^6 N/H = 75 +/- 4. There are no statistically significant variations in the measured N abundances from sightline to sightline and no evidence of density-dependent depletion from the gas-phase. Since N is not expected to be depleted much into dust grains in these diffuse sightlines, its gas-phase abundance should reflect the total interstellar abundance. Consequently, the GHRS observations imply that the abundance of interstellar nitrogen (gas plus grains) in the local Milky Way is about 80% of the solar system value of 106^6 N/H = 93 +/- 16. Although this interstellar abundance deficit is somewhat less than that recently found for oxygen and krypton with GHRS, the solar N abundance and the N I oscillator strengths are too uncertain to definitively rule out either a solar ISM N abundance or a 2/3 solar ISM N abundance similar to that of O and Kr.Comment: 14 pages, LaTeX, 2 Postscript figures; ApJ Letters, in pres

    Suppression of Excitation and Spectral Broadening Induced by Interactions in a Cold Gas of Rydberg Atoms

    Full text link
    We report on the observation of ultralong range interactions in a gas of cold Rubidium Rydberg atoms. The van-der-Waals interaction between a pair of Rydberg atoms separated as far as 100,000 Bohr radii features two important effects: Spectral broadening of the resonance lines and suppression of excitation with increasing density. The density dependence of these effects is investigated in detail for the S- and P- Rydberg states with main quantum numbers n ~ 60 and n ~ 80 excited by narrow-band continuous-wave laser light. The density-dependent suppression of excitation can be interpreted as the onset of an interaction-induced local blockade
    • …
    corecore