8 research outputs found

    Surface modification of polymer textile biomaterials by N2 supercritical jet: Preliminary mechanical and biological performance assessment

    No full text
    International audienceForeign Body Reaction (FBR) is a critical issue to be addressed when polyethylene terephthalate (PET) textile implants are considered in the medical field to treat pathologies involving hernia repair, revascularization strategies in arterial disease, and aneurysm or heart valve replacement. The natural porosity of textile materials tends to induce exaggerated tissue ingrowth which may prevent the implants from remaining flexible. One hypothesized way to limit the FBR process is to increase the material surface roughness at the yarn level. Supercritical N 2 (ScN 2) jet particle projection is a technique that provides enough velocity to particles in order to induce plastic deformation on the impacted surface. This work investigates the influence of ScN 2 jet projection parameters like standoff distance or particle size on the roughness that can be obtained on medical polymer yarns of various diameters (100 and 400 ÎŒm) and woven textile surfaces obtained from a 100 ÎŒm yarn. Moreover, the mechanical and biological performances of the obtained modified textile material are assessed. Results bring out that with appropriate testing conditions (500 bars jet/500 mm distance between nozzle and PET textile) and particle size around 50 ÎŒm, it is possible to generate 20 ÎŒm large and 4 ÎŒm deep craters on a 100 ÎŒm monofilament PET yarn and fabric. Regarding the strength of the textile material, it is only slightly modified with the treatment process, as the tenacity of the yarns decreases by only 10%. Moreover, It is shown that the obtained structures tend to limit the adhesion and slow down the proliferation of human fibroblasts

    On the Mechanics of Transcatheter Aortic Valve Replacement

    No full text
    Transcatheter aortic valves (TAVs) represent the latest advances in prosthetic heart valve technology. TAVs are truly transformational as they bring the benefit of heart valve replacement to patients that would otherwise not be operated on. Nevertheless, like any new device technology, the high expectations are dampened with growing concerns arising from frequent complications that develop in patients, indicating that the technology is far from being mature. Some of the most common complications that plague current TAV devices include malpositioning, crimp-induced leaflet damage, paravalvular leak, thrombosis, conduction abnormalities and prosthesis-patient mismatch. In this article, we provide an in-depth review of the current state-of-the-art pertaining the mechanics of TAVs while highlighting various studies guiding clinicians, regulatory agencies, and next-generation device designers

    Transcatheter Heart Valves: A Biomaterials Perspective

    No full text
    corecore