63 research outputs found

    Leukocyte populations in human preterm and term breast milk identified by multicolour flow cytometry

    Get PDF
    Background Extremely preterm infants are highly susceptible to bacterial infections but breast milk provides some protection. It is unknown if leukocyte numbers and subsets in milk differ between term and preterm breast milk. This study serially characterised leukocyte populations in breast milk of mothers of preterm and term infants using multicolour flow cytometry methods for extended differential leukocyte counts in blood. Methods Sixty mothers of extremely preterm (<28 weeks gestational age), very preterm (28–31 wk), and moderately preterm (32–36 wk), as well as term (37–41 wk) infants were recruited. Colostrum (d2–5), transitional (d8–12) and mature milk (d26–30) samples were collected, cells isolated, and leukocyte subsets analysed using flow cytometry. Results The major CD45+ leukocyte populations circulating in blood were also detectable in breast milk but at different frequencies. Progression of lactation was associated with decreasing CD45+ leukocyte concentration, as well as increases in the relative frequencies of neutrophils and immature granulocytes, and decreases in the relative frequencies of eosinophils, myeloid and B cell precursors, and CD16- monocytes. No differences were observed between preterm and term breast milk in leukocyte concentration, though minor differences between preterm groups in some leukocyte frequencies were observed. Conclusions Flow cytometry is a useful tool to identify and quantify leukocyte subsets in breast milk. The stage of lactation is associated with major changes in milk leukocyte composition in this population. Fresh preterm breast milk is not deficient in leukocytes, but shorter gestation may be associated with minor differences in leukocyte subset frequencies in preterm compared to term breast milk

    What is the potential of oligodendrocyte progenitor cells to successfully treat human spinal cord injury?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Spinal cord injury is a serious and debilitating condition, affecting millions of people worldwide. Long seen as a permanent injury, recent advances in stem cell research have brought closer the possibility of repairing the spinal cord. One such approach involves injecting oligodendrocyte progenitor cells, derived from human embryonic stem cells, into the injured spinal cord in the hope that they will initiate repair. A phase I clinical trial of this therapy was started in mid 2010 and is currently underway.</p> <p>Discussion</p> <p>The theory underlying this approach is that these myelinating progenitors will phenotypically replace myelin lost during injury whilst helping to promote a repair environment in the lesion. However, the importance of demyelination in the pathogenesis of human spinal cord injury is a contentious issue and a body of literature suggests that it is only a minor factor in the overall injury process.</p> <p>Summary</p> <p>This review examines the validity of the theory underpinning the on-going clinical trial as well as analysing published data from animal models and finally discussing issues surrounding safety and purity in order to assess the potential of this approach to successfully treat acute human spinal cord injury.</p

    Treatment of Rat Spinal Cord Injury with the Neurotrophic Factor Albumin-Oleic Acid: Translational Application for Paralysis, Spasticity and Pain

    Get PDF
    Sensorimotor dysfunction following incomplete spinal cord injury (iSCI) is often characterized by the debilitating symptoms of paralysis, spasticity and pain, which require treatment with novel pleiotropic pharmacological agents. Previous in vitro studies suggest that Albumin (Alb) and Oleic Acid (OA) may play a role together as an endogenous neurotrophic factor. Although Alb can promote basic recovery of motor function after iSCI, the therapeutic effect of OA or Alb-OA on a known translational measure of SCI associated with symptoms of spasticity and change in nociception has not been studied. Following T9 spinal contusion injury in Wistar rats, intrathecal treatment with: i) Saline, ii) Alb (0.4 nanomoles), iii) OA (80 nanomoles), iv) Alb-Elaidic acid (0.4/80 nanomoles), or v) Alb-OA (0.4/80 nanomoles) were evaluated on basic motor function, temporal summation of noxious reflex activity, and with a new test of descending modulation of spinal activity below the SCI up to one month after injury. Albumin, OA and Alb-OA treatment inhibited nociceptive Tibialis Anterior (TA) reflex activity. Moreover Alb-OA synergistically promoted early recovery of locomotor activity to 50±10% of control and promoted de novo phasic descending inhibition of TA noxious reflex activity to 47±5% following non-invasive electrical conditioning stimulation applied above the iSCI. Spinal L4–L5 immunohistochemistry demonstrated a unique increase in serotonin fibre innervation up to 4.2±1.1 and 2.3±0.3 fold within the dorsal and ventral horn respectively with Alb-OA treatment when compared to uninjured tissue, in addition to a reduction in NR1 NMDA receptor phosphorylation and microglia reactivity. Early recovery of voluntary motor function accompanied with tonic and de novo phasic descending inhibition of nociceptive TA flexor reflex activity following Alb-OA treatment, mediated via known endogenous spinal mechanisms of action, suggests a clinical application of this novel neurotrophic factor for the treatment of paralysis, spasticity and pain

    Intracranial thrombosis of the internal carotid artery after closed head injury.

    No full text
    Occlusion of the internal carotoid artery may arise in several ways..

    Direct dystrophin and reporter gene transfer into dog muscle in vivo

    No full text
    Bacterial β-galactosidase cDNA was injected without lipofectin into 41 sites in dog muscle and expression was seen in 22 of them. The cDNA and lipofectin was injected into 35 similar sites and expression was seen in 21. Expression was seen in a maximum of 2.5% of muscle fibers and 23.21% of nonmuscle cells. A total of 106 muscle sites were injected with the minigene with and without lipofectin. In 4 of the 45 sites injected with the minigene without lipofectin human dystrophin was expressed around the periphery of 0.3% of the fibers. Bacterial β-galactosidase cDNA was injected into the peritoneal cavity of 4 pups, 2 of which also received lipofectin. In all 4, expression was seen in liver, spleen, and mesenteric lymph node. In the 2 pups that received lipofectin, expression was also seen in the diaphragm, intercostal, and abdominal muscles of 1 and in the diagphragm and intercostal muscles of the other. These experiments show that human dystrophin transgene expression can be obtained in dog muscle. However, other methods will be required to increase the degree of expression before gene therapy trials can be undertaken

    Intramedullary spinal cord metastasis from mammary carcinoma

    No full text
    corecore