195 research outputs found

    Exact solution of A-D Temperley-Lieb Models

    Full text link
    We solve for the spectrum of quantum spin chains based on representations of the Temperley-Lieb algebra associated with the quantum groups {\cal U}_q(X_n } for X_n = A_1,B_n,C_nand and D_n$. We employ a generalization of the coordinate Bethe-Ansatz developed previously for the deformed biquadratic spin one chain. As expected, all these models have equivalent spectra, i.e. they differ only in the degeneracy of their eigenvalues. This is true for finite length and open boundary conditions. For periodic boundary conditions the spectra of the lower dimensional representations are containded entirely in the higher dimensional ones. The Bethe states are highest weight states of the quantum group, except for some states with energy zero

    Recording from two neurons: second order stimulus reconstruction from spike trains and population coding

    Full text link
    We study the reconstruction of visual stimuli from spike trains, recording simultaneously from the two H1 neurons located in the lobula plate of the fly Chrysomya megacephala. The fly views two types of stimuli, corresponding to rotational and translational displacements. If the reconstructed stimulus is to be represented by a Volterra series and correlations between spikes are to be taken into account, first order expansions are insufficient and we have to go to second order, at least. In this case higher order correlation functions have to be manipulated, whose size may become prohibitively large. We therefore develop a Gaussian-like representation for fourth order correlation functions, which works exceedingly well in the case of the fly. The reconstructions using this Gaussian-like representation are very similar to the reconstructions using the experimental correlation functions. The overall contribution to rotational stimulus reconstruction of the second order kernels - measured by a chi-squared averaged over the whole experiment - is only about 8% of the first order contribution. Yet if we introduce an instant-dependent chi-square to measure the contribution of second order kernels at special events, we observe an up to 100% improvement. As may be expected, for translational stimuli the reconstructions are rather poor. The Gaussian-like representation could be a valuable aid in population coding with large number of neurons

    Quantum spin chains of Temperley-Lieb type: periodic boundary conditions, spectral multiplicities and finite temperature

    Full text link
    We determine the spectra of a class of quantum spin chains of Temperley-Lieb type by utilizing the concept of Temperley-Lieb equivalence with the S=1/2 XXZ chain as a reference system. We consider open boundary conditions and in particular periodic boundary conditions. For both types of boundaries the identification with XXZ spectra is performed within isomorphic representations of the underlying Temperley-Lieb algebra. For open boundaries the spectra of these models differ from the spectrum of the associated XXZ chain only in the multiplicities of the eigenvalues. The periodic case is rather different. Here we show how the spectrum is obtained sector-wise from the spectra of globally twisted XXZ chains. As a spin-off, we obtain a compact formula for the degeneracy of the momentum operator eigenvalues. Our representation theoretical results allow for the study of the thermodynamics by establishing a TL-equivalence at finite temperature and finite field.Comment: 29 pages, LaTeX, two references added, redundant figures remove

    Scaling limit of the one-dimensional attractive Hubbard model: The half-filled band case

    Full text link
    The scaling limit of the higher level Bethe Ansatz (HLBA) equations for a macroscopically half-filled Hubbard chain is considered. These equations practically decouple into three disjoint sets which are again of the BA type, and correspond to the secular equations of three different kinds of dressed particles (one massive and two massless). The finite size corrections and the fine structure of the spectrum show that the massless sector corresponds to a conformal field with central charge c=1 and Gaussian anomalous dimensions. The zero temperature free energy is also calculated and is found to be in perfect agreement with the results of a perturbative calculation in the SU(2) chiral Gross-Neveu (CGN) model.Comment: LATEX, uses Revtex, 39 page

    Generalized Particle Statistics in Two-Dimensions: Examples from the Theory of Free Massive Dirac Field

    Full text link
    In the framework of algebraic quantum field theory we analyze the anomalous statistics exhibited by a class of automorphisms of the observable algebra of the two-dimensional free massive Dirac field, constructed by fermionic gauge group methods. The violation of Haag duality, the topological peculiarity of a two-dimensional space-time and the fact that unitary implementers do not lie in the global field algebra account for strange behaviour of statistics, which is no longer an intrinsic property of sectors. Since automorphisms are not inner, we exploit asymptotic abelianness of intertwiners in order to construct a braiding for a suitable CC^*-tensor subcategory of End(A\mathscr{A}). We define two inequivalent classes of path connected bi-asymptopias, selecting only those sets of nets which yield a true generalized statistics operator.Comment: 24 page

    Clinical benefit of fulvestrant in postmenopausal women with advanced breast cancer and primary or acquired resistance to aromatase inhibitors: final results of phase II Swiss Group for Clinical Cancer Research Trial (SAKK 21/00)

    Get PDF
    Background: The aim of this study was to evaluate the efficacy and tolerability of fulvestrant, an estrogen receptor antagonist, in postmenopausal women with hormone-responsive tumors progressing after aromatase inhibitor (AI) treatment. Patients and methods: This is a phase II, open, multicenter, noncomparative study. Two patient groups were prospectively considered: group A (n = 70) with AI-responsive disease and group B (n = 20) with AI-resistant disease. Fulvestrant 250 mg was administered as intramuscular injection every 28 (±3) days. Results: All patients were pretreated with AI and 84% also with tamoxifen or toremifene; 67% had bone metastases and 45% liver metastases. Fulvestrant administration was well tolerated and yielded a clinical benefit (CB; defined as objective response or stable disease [SD] for ≥24 weeks) in 28% (90% confidence interval [CI] 19% to 39%) of patients in group A and 37% (90% CI 19% to 58%) of patients in group B. Median time to progression (TTP) was 3.6 (95% CI 3.0 to 4.8) months in group A and 3.4 (95% CI 2.5 to 6.7) months in group B. Conclusions: Overall, 30% of patients who had progressed following prior AI treatment gained CB with fulvestrant, thereby delaying indication to start chemotherapy. Prior response to an AI did not appear to be predictive for benefit with fulvestran

    Multi-particle structure in the Z_n-chiral Potts models

    Full text link
    We calculate the lowest translationally invariant levels of the Z_3- and Z_4-symmetrical chiral Potts quantum chains, using numerical diagonalization of the hamiltonian for N <= 12 and N <= 10 sites, respectively, and extrapolating N to infinity. In the high-temperature massive phase we find that the pattern of the low-lying zero momentum levels can be explained assuming the existence of n-1 particles carrying Z_n-charges Q = 1, ... , n-1 (mass m_Q), and their scattering states. In the superintegrable case the masses of the n-1 particles become proportional to their respective charges: m_Q = Q m_1. Exponential convergence in N is observed for the single particle gaps, while power convergence is seen for the scattering levels. We also verify that qualitatively the same pattern appears for the self-dual and integrable cases. For general Z_n we show that the energy-momentum relations of the particles show a parity non-conservation asymmetry which for very high temperatures is exclusive due to the presence of a macroscopic momentum P_m=(1-2Q/n)/\phi, where \phi is the chiral angle and Q is the Z_n-charge of the respective particle.Comment: 22 pages (LaTeX) plus 5 figures (included as PostScript), BONN-HE-92-3
    corecore