353 research outputs found

    On the Correlation Between CO Absorption and Far-Ultraviolet Non-Linear Extinction Toward Galactic OB Stars

    Get PDF
    A sample of 59 sight lines to reddened Galactic OB stars was examined for correlations of the strength of the CO Fourth Positive (A - X) absorption band system with the ultraviolet interstellar extinction curve parameters. We used archival high-dispersion NEWSIPS IUE spectra to measure the CO absorption for comparison to parametric fits of the extinction curves from the literature. A strong correlation with the non-linear far-UV curvature term was found with greater absorption, normalized to E(B-V), being associated with more curvature. A weaker trend with the linear extinction term was also found. Mechanisms for enhancing CO in dust environments exhibiting high non-linear curvature are discussed.Comment: 10 pages, including 6 figures. LaTeX2e (emulateapj5.sty). To appear in ApJ, Sep 20, 200

    The structural changes of water ice I during warmup

    Get PDF
    The polymorph transitions of vapor deposited water ice I during warmup from 15 K to 210 K was mapped by means of selected area electron diffraction. The polymorph transitions account for many phenomena observed in laboratory analog studies of cometary outgassing and radial diffusion in UV photolyzed interstellar ices

    High-Density Amorphous Ice, the Frost on Interstellar Grains

    Get PDF
    Most water ice in the universe is in a form which does not occur naturally on Earth and of which only minimal amounts have been made in the laboratory. We have encountered this 'high-density amorphous ice' in electron diffraction experiments of low-temperature (T less than 30 K) vapor-deposited water and have subsequently modeled its structure using molecular dynamics simulations. The characteristic feature of high-density amorphous ice is the presence of 'interstitial' oxygen pair distances between 3 and 4 A. However, we find that the structure is best described as a collapsed lattice of the more familiar low-density amorphous form. These distortions are frozen in at temperatures below 38 K because, we propose, it requires the breaking of one hydrogen bond, on average, per molecule to relieve the strain and to restructure the lattice to that of low-density amorphous ice. Several features of astrophysical ice analogs studied in laboratory experiments are readily explained by the structural transition from high-density amorphous ice into low-density amorphous ice. Changes in the shape of the 3.07 gm water band, trapping efficiency of CO, CO loss, changes in the CO band structure, and the recombination of radicals induced by low-temperature UV photolysis all covary with structural changes that occur in the ice during this amorphous to amorphous transition. While the 3.07 micrometers ice band in various astronomical environments can be modeled with spectra of simple mixtures of amorphous and crystalline forms, the contribution of the high-density amorphous form nearly always dominates

    Can neutral and ionized PAHs be carriers of the UV extinction bump and the diffuse interstellar bands?

    Full text link
    Up to now, no laboratory-based study has investigated polycyclic aromatic hydrocarbon (PAH) species as potential carriers of both the diffuse interstellar bands (DIBs) and the 2175 A UV bump. We examined the proposed correlation between these two features by applying experimental and theoretical techniques on two specific medium-sized/large PAHs (dibenzorubicene C30H14 and hexabenzocoronene C42H18) in their neutral and cationic states. It was already shown that mixtures of sufficiently large, neutral PAHs can partly or even completely account for the UV bump. We investigated how the absorption bands are altered upon ionization of these molecules by interstellar UV photons. The experimental studies presented here were realized by performing matrix isolation spectroscopy with subsequent far-UV irradiation. The main effects were found to be a broadening of the absorption bands in the UV combined with slight red shifts. The position of the complete pi - pi* absorption structure around 217.5 nm, however, remains more or less unchanged which could explain the observed position invariance of the interstellar bump for different lines of sight. This favors the assignment of this feature to the interstellar PAH population. As far as the DIBs are concerned, neither our investigations nor the laboratory studies carried out by other research groups support a possible connection with this class of molecules. Instead, there are reasonable arguments that neutral and singly ionized cationic PAHs cannot be made responsible for the DIBs.Comment: 11 pages, 7 figures, 1 tabl

    Improved Understanding of the Inflammatory Response in Synovial Fluid and Serum after Traumatic Knee Injury, Excluding Fractures of the Knee:A Systematic Review

    Get PDF
    Background: Traumatic knee injury results in a 4- to 10-fold increased risk of post-traumatic osteoarthritis (PTOA). Currently, there are no successful interventions for preventing PTOA after knee injury. The aim of this study is to identify inflammatory proteins that are increased in serum and synovial fluid after acute knee injury, excluding intra-articular fractures. Methods: A literature search was done according to the PRISMA guidelines. Articles reporting about inflammatory proteins after knee injury, except fractures, up to December 8, 2021 were collected. Inclusion criteria were as follows: patients younger than 45 years, no radiographic signs of knee osteoarthritis at baseline, and inflammatory protein measurement within 1 year after trauma. Risk of bias was assessed of the included studies. The level of evidence was determined by the Strength of Recommendation Taxonomy. Results: Ten studies were included. All included studies used a healthy control group or the contralateral knee as healthy control. Strong evidence for interleukin 6 (IL-6) and limited evidence for CCL4 show elevated concentrations of these proteins in synovial fluid (SF) after acute knee injury; no upregulation in SF for IL-2, IL-10, CCL3, CCL5, CCL11, granulocyte colony-stimulating factor (G-CSF), and granulocyte-macrophage colony-stimulating factor (GM-CSF) was found. Limited evidence was found for no difference in serum concentration of IL-1β, IL-6, IL-10, CCL2, and tumor necrosis factor alpha (TNF-α) after knee injury. Conclusion: Interleukin 6 and CCL4 are elevated in SF after acute knee injury. Included studies failed to demonstrate increased concentration of inflammatory proteins in SF samples taken 6 weeks after trauma. Future research should focus on SF inflammatory protein measurements taken less than 6 weeks after injury.</p

    Dynamical Model for the Zodiacal Cloud and Sporadic Meteors

    Full text link
    The solar system is dusty, and would become dustier over time as asteroids collide and comets disintegrate, except that small debris particles in interplanetary space do not last long. They can be ejected from the solar system by Jupiter, thermally destroyed near the Sun, or physically disrupted by collisions. Also, some are swept by the Earth (and other planets), producing meteors. Here we develop a dynamical model for the solar system meteoroids and use it to explain meteor radar observations. We find that the Jupiter Family Comets (JFCs) are the main source of the prominent concentrations of meteors arriving to the Earth from the helion and antihelion directions. To match the radiant and orbit distributions, as measured by the Canadian Meteor Orbit Radar (CMOR) and Advanced Meteor Orbit Radar (AMOR), our model implies that comets, and JFCs in particular, must frequently disintegrate when reaching orbits with low perihelion distance. Also, the collisional lifetimes of millimeter particles may be longer (>10^5 yr at 1 AU) than postulated in the standard collisional models (10^4 yr at 1 AU), perhaps because these chondrule-sized meteoroids are stronger than thought before. Using observations of the Infrared Astronomical Satellite (IRAS) to calibrate the model, we find that the total cross section and mass of small meteoroids in the inner solar system are (1.7-3.5)x10^11 km^2 and 4x10^19 g, respectively, in a good agreement with previous studies. The mass input required to keep the Zodiacal Cloud (ZC) in a steady state is estimated to be 10^4-10^5 kg/s. The input is up to 10 times larger than found previously, mainly because particles released closer to the Sun have shorter collisional lifetimes, and need to be supplied at a faster rate

    The optical spectrum of a large isolated polycyclic aromatic hydrocarbon: hexa-peri-hexabenzocoronene, C42H18

    Full text link
    The first optical spectrum of an isolated polycyclic aromatic hydrocarbon large enough to survive the photophysical conditions of the interstellar medium is reported. Vibronic bands of the first electronic transition of the all benzenoid polycyclic aromatic hydrocarbon hexa-peri-hexabenzocoronene were observed in the 4080-4530 Angstrom range by resonant 2-color 2-photon ionization spectroscopy. The strongest feature at 4264 Angstrom is estimated to have an oscillator strength of f=1.4x10^-3, placing an upper limit on the interstellar abundance of this polycyclic aromatic hydrocarbon at 4x10^12 cm^-2, accounting for a maximum of ~0.02% of interstellar carbon. This study opens up the possibility to rigorously test neutral polycyclic aromatic hydrocarbons as carriers of the diffuse interstellar bands in the near future.Comment: 9 pages, 1 figure. Fixed a typo on the frequency of the 'b' ban
    corecore