8 research outputs found

    Low density lipoprotein and liposome mediated uptake and cytotoxic effect of N4-octadecyl-1-β-D-arabinofuranosylcytosine in Daudi lymphoma cells

    Get PDF
    Low density lipoprotein (LDL) receptor-mediated uptake and cytotoxic effects of N4-octadecyl-1-beta-D-arabinofuranosylcytosine (NOAC) were studied in Daudi lymphoma cells. NOAC was either incorporated into LDL or liposomes to compare specific and unspecific uptake mechanisms. Binding of LDL to Daudi cells was not altered after NOAC incorporation (K(D) 60 nM). Binding of liposomal NOAC was not saturable with increasing concentrations. Specific binding of NOAC-LDL to Daudi cells was five times higher than to human lymphocytes. LDL receptor binding could be blocked and up- or down-regulated. Co-incubation with colchicine reduced NOAC-LDL uptake by 36%. These results suggested that NOAC-LDL is taken up via the LDL receptor pathway. In an in vitro cytotoxicity test, the IC50 of NOAC-LDL was about 160 microM, whereas with liposomal NOAC the IC50 was 40 microM. Blocking the LDL receptors with empty LDL protected 50% of the cells from NOAC cytotoxicity. The cellular distribution of NOAC-LDL or NOAC-liposomes differed only in the membrane and nuclei fraction with 13% and 6% respectively. Although it is more convenient to prepare NOAC-liposomes as compared to the loading of LDL particles with the drug, the receptor-mediated uptake of NOAC-LDL provides an interesting rationale for the specific delivery of the drug to tumours that express elevated numbers of LDL receptors

    Indium-111 labeling of low density lipoproteins (LDL) with the DTPA-bis(stearylamide) for tumor localization: first imaging and biodistribution in B16 tumored mice

    No full text
    In order to use the LDL receptor pathway to target radionuclides to cancer sites for imaging and diagnostic purposes, LDL have been labeled with 111In using the bis(stearylamide) of diethylenetriaminepentaacetic acid (DTPA), L. After in vitro experiments showing the stability of the 111Un-L-LDL particles and their recognition by the LDL-receptor, experiments were carried out in vivo. In first experiments in healthy mice, scintigraphies made 24 hours after intra-veinous injection of 111In-citrate or 111In-L-LDL showed a difference in Un biodistribution suggesting that 111In-L-LDL follow the LDL metabolism in vivo. In experiments on mice carrying Melanoma B16 since 22 days, the visualization of the tumors 24 hr after 111In-L-LDL injection was obtained for 400 μg injected proteins and a In-L/LDL ratio varying from 3/10 to 3/100. These first in vivo experiments have pointed out the importance of two parameters for visualizing the tumors, the injected protein dose and the In-L/LDL ratio

    Bimodal paramagnetic and fluorescent liposomes for cellular and tumor magnetic resonance imaging

    No full text
    A novel bimodal fluorescent and paramagnetic liposome is described for cellular labeling. In this study, we show the synthesis of a novel gadolinium lipid, Gd.DOTA.DSA, designed for liposomal cell labeling and tumor imaging. Liposome formulations consisting of this lipid were optimized in order to allow for maximum cellular entry, and the optimized formulation was used to label HeLa cells in vitro. The efficiency of this novel bimodal Gd-liposome formulation for cell labeling was demonstrated using both fluorescence microscopy and magnetic resonance imaging (MRI). The uptake of Gd-liposomes into cells induced a marked reduction in their MRI T1 relaxation times. Fluorescence microscopy provided concomitant proof of uptake and revealed liposome internalization into the cell cytosol. The optimized formulation was also found to exhibit minimal cytotoxicity and was shown to have capacity for plasmid DNA (pDNA) transfection. A further second novel neutral bimodal Gd-liposome is described for the labeling of xenograft tumors in vivo utilizing the enhanced permeation and retention effect (EPR). Balb/c nude mice were inoculated with IGROV-1 cells, and the resulting tumor was imaged by MRI using these in vivo Gd-liposomes formulated with low charge and a poly(ethylene glycol) (PEG) calyx for long systemic circulation. These Gd-liposomes which were less than 100 nm in size were shown to accumulate in tumor tissue by MRI, and this was also verified by fluorescence microscopy of histology samples. Our in vivo tumor imaging results demonstrate the effectiveness of MRI to observe passive targeting of long-term circulating liposomes to tumors in real time, and allow for MRI directed therapy, wherein the delivery of therapeutic genes and drugs to tumor sites can be monitored while therapeutic effects on tumor mass and/or size may be simultaneously observed, quantitated, and correlated

    2 Hydrogen-1 NMR. References

    No full text
    corecore