83 research outputs found
Higgs mediated Double Flavor Violating top decays in Effective Theories
The possibility of detecting double flavor violating top quark transitions at
future colliders is explored in a model-independent manner using the effective
Lagrangian approach through the () decays. A
Yukawa sector that contemplates invariants of up to
dimension six is proposed and used to derive the most general flavor violating
and CP violating and vertices of renormalizable type.
Low-energy data, on high precision measurements, and experimental limits are
used to constraint the and vertices and then used to
predict the branching ratios for the decays. It is found
that this branching ratios may be of the order of , for a
relative light Higgs boson with mass lower than , which could be more
important than those typical values found in theories beyond the standard model
for the rare top quark decays () or . %% LHC experiments, by using a total integrated luminosity of of data, will be able to rule out, at 95% C.L., DFV top quark
decays up to a Higgs mass of 155 GeV/ or discover such a process up to a
Higgs mass of 147 GeV/.Comment: 24 pages, 11 figure
Characterisations of Classical and Non-classical states of Quantised Radiation
A new operator based condition for distinguishing classical from
non-classical states of quantised radiation is developed. It exploits the fact
that the normal ordering rule of correspondence to go from classical to quantum
dynamical variables does not in general maintain positivity. It is shown that
the approach naturally leads to distinguishing several layers of increasing
nonclassicality, with more layers as the number of modes increases. A
generalisation of the notion of subpoissonian statistics for two-mode radiation
fields is achieved by analysing completely all correlations and fluctuations in
quadratic combinations of mode annihilation and creation operators conserving
the total photon number. This generalisation is nontrivial and intrinsically
two-mode as it goes beyond all possible single mode projections of the two-mode
field. The nonclassicality of pair coherent states, squeezed vacuum and
squeezed thermal states is analysed and contrasted with one another, comparing
the generalised subpoissonian statistics with extant signatures of nonclassical
behaviour.Comment: 16 pages, Revtex, One postscript Figure compressed and uuencoded
Replaced, minor changes in eq 4.30 and 4.32. no effect on the result
q-Quaternions and q-deformed su(2) instantons
We construct (anti)instanton solutions of a would-be q-deformed su(2)
Yang-Mills theory on the quantum Euclidean space R_q^4 [the SO_q(4)-covariant
noncommutative space] by reinterpreting the function algebra on the latter as a
q-quaternion bialgebra. Since the (anti)selfduality equations are covariant
under the quantum group of deformed rotations, translations and scale change,
by applying the latter we can generate new solutions from the one centered at
the origin and with unit size. We also construct multi-instanton solutions. As
they depend on noncommuting parameters playing the roles of `sizes' and
`coordinates of the centers' of the instantons, this indicates that the moduli
space of a complete theory will be a noncommutative manifold. Similarly, gauge
transformations should be allowed to depend on additional noncommutative
parameters.Comment: Latex file, 39 pages. Final version appeared in JM
Exercises in exact quantization
The formalism of exact 1D quantization is reviewed in detail and applied to
the spectral study of three concrete Schr\"odinger Hamiltonians [-\d^2/\d q^2
+ V(q)]^\pm on the half-line , with a Dirichlet (-) or Neumann (+)
condition at q=0. Emphasis is put on the analytical investigation of the
spectral determinants and spectral zeta functions with respect to singular
perturbation parameters. We first discuss the homogeneous potential
as vs its (solvable) limit (an infinite square well):
useful distinctions are established between regular and singular behaviours of
spectral quantities; various identities among the square-well spectral
functions are unraveled as limits of finite-N properties. The second model is
the quartic anharmonic oscillator: its zero-energy spectral determinants
\det(-\d^2/\d q^2 + q^4 + v q^2)^\pm are explicitly analyzed in detail,
revealing many special values, algebraic identities between Taylor
coefficients, and functional equations of a quartic type coupled to asymptotic
properties of Airy type. The third study addresses the
potentials of even degree: their zero-energy spectral
determinants prove computable in closed form, and the generalized eigenvalue
problems with v as spectral variable admit exact quantization formulae which
are perfect extensions of the harmonic oscillator case (corresponding to N=2);
these results probably reflect the presence of supersymmetric potentials in the
family above.Comment: latex txt.tex, 2 files, 34 pages [SPhT-T00/078]; v2: corrections and
updates as indicated by footnote
A tentative Replica Study of the Glass Transition
We propose a method to study quantitatively the glass transition in a system
of interacting particles. In spite of the absence of any quenched disorder, we
introduce a replicated version of the hypernetted chain equations. The solution
of these equations, for hard or soft spheres, signals a transition to the glass
phase. However the predicted value of the energy and specific heat in the glass
phase are wrong, calling for an improvement of this method.Comment: 9 pages, four postcript figures attache
Large and Almost Maximal Neutrino Mixing within the Type II See-Saw Mechanism
Within the type II see-saw mechanism the light neutrino mass matrix is given
by a sum of a direct (or triplet) mass term and the conventional (type I)
see-saw term. Both versions of the see-saw mechanism explain naturally small
neutrino masses, but the type II scenario offers interesting additional
possibilities to explain large or almost maximal or vanishing mixings which are
discussed in this paper. We first introduce ``type II enhancement'' of neutrino
mixing, where moderate cancellations between the two terms can lead to large
neutrino mixing even if all individual mass matrices and terms generate small
mixing. However, nearly maximal or vanishing mixings are not naturally
explained in this way, unless there is a certain initial structure (symmetry)
which enforces certain elements of the matrices to be identical or related in a
special way. We therefore assume that the leading structure of the neutrino
mass matrix is the triplet term and corresponds to zero U_{e3} and maximal
theta_{23}. Small but necessary corrections are generated by the conventional
see-saw term. Then we assume that one of the two terms corresponds to an
extreme mixing scenario, such as bimaximal or tri-bimaximal mixing. Deviations
from this scheme are introduced by the second term. One can mimic Quark-Lepton
Complementarity in this way. Finally, we note that the neutrino mass matrix for
tri-bimaximal mixing can be -- depending on the mass hierarchy -- written as a
sum of two terms with simple structure. Their origin could be the two terms of
type II see-saw.Comment: 25 pages. Comments and references added, to appear in JHE
Branonium
We study the bound states of brane/antibrane systems by examining the motion
of a probe antibrane moving in the background fields of N source branes. The
classical system resembles the point-particle central force problem, and the
orbits can be solved by quadrature. Generically the antibrane has orbits which
are not closed on themselves. An important special case occurs for some
Dp-branes moving in three transverse dimensions, in which case the orbits may
be obtained in closed form, giving the standard conic sections but with a
nonstandard time evolution along the orbit. Somewhat surprisingly, in this case
the resulting elliptical orbits are exact solutions, and do not simply apply in
the limit of asymptotically-large separation or non-relativistic velocities.
The orbits eventually decay through the radiation of massless modes into the
bulk and onto the branes, and we estimate this decay time. Applications of
these orbits to cosmology are discussed in a companion paper.Comment: 34 pages, LaTeX, 4 figures, uses JHEP
Next to leading order spin-orbit effects in the motion of inspiralling compact binaries
Using effective field theory (EFT) techniques we calculate the
next-to-leading order (NLO) spin-orbit contributions to the gravitational
potential of inspiralling compact binaries. We use the covariant spin
supplementarity condition (SSC), and explicitly prove the equivalence with
previous results by Faye et al. in arXiv:gr-qc/0605139. We also show that the
direct application of the Newton-Wigner SSC at the level of the action leads to
the correct dynamics using a canonical (Dirac) algebra. This paper then
completes the calculation of the necessary spin dynamics within the EFT
formalism that will be used in a separate paper to compute the spin
contributions to the energy flux and phase evolution to NLO.Comment: 25 pages, 4 figures, revtex4. v2: minor changes, refs. added. To
appear in Class. Quant. Gra
Uplifting and Inflation with D3 Branes
Back-reaction effects can modify the dynamics of mobile D3 branes moving
within type IIB vacua, in a way which has recently become calculable. We
identify some of the ways these effects can alter inflationary scenarios, with
the following three results: (1) By examining how the forces on the brane due
to moduli-stabilizing interactions modify the angular motion of D3 branes
moving in Klebanov-Strassler type throats, we show how previous slow-roll
analyses can remain unchanged for some brane trajectories, while being modified
for other trajectories. These forces cause the D3 brane to sink to the bottom
of the throat except in a narrow region close to the D7 brane, and do not
ameliorate the \eta-problem of slow roll inflation in these throats; (2) We
argue that a recently-proposed back-reaction on the dilaton field can be used
to provide an alternative way of uplifting these compactifications to Minkowski
or De Sitter vacua, without the need for a supersymmetry-breaking anti-D3
brane; and (3) by including also the D-term forces which arise when
supersymmetry-breaking fluxes are included on D7 branes we identify the 4D
supergravity interactions which capture the dynamics of D3 motion in D3/D7
inflationary scenarios. The form of these potentials sheds some light on recent
discussions of how symmetries constrain D term interactions in the low-energy
theory.Comment: JHEP.cls, 35 pages, 3 .eps figure
Equilibrium configurations of fluids and their stability in higher dimensions
We study equilibrium shapes, stability and possible bifurcation diagrams of
fluids in higher dimensions, held together by either surface tension or
self-gravity. We consider the equilibrium shape and stability problem of
self-gravitating spheroids, establishing the formalism to generalize the
MacLaurin sequence to higher dimensions. We show that such simple models, of
interest on their own, also provide accurate descriptions of their general
relativistic relatives with event horizons. The examples worked out here hint
at some model-independent dynamics, and thus at some universality: smooth
objects seem always to be well described by both ``replicas'' (either
self-gravity or surface tension). As an example, we exhibit an instability
afflicting self-gravitating (Newtonian) fluid cylinders. This instability is
the exact analogue, within Newtonian gravity, of the Gregory-Laflamme
instability in general relativity. Another example considered is a
self-gravitating Newtonian torus made of a homogeneous incompressible fluid. We
recover the features of the black ring in general relativity.Comment: 42 pages, 11 Figures, RevTeX4. Accepted for publication in Classical
and Quantum Gravity. v2: Minor corrections and references adde
- …