373 research outputs found

    Is there elliptic flow without transverse flow?

    Full text link
    Azimuthal anisotropy of final particle distributions was originally introduced as a signature of transverse collective flow. We show that finite anisotropy in momentum space can result solely from the shape of the particle emitting source. However, by comparing the differential anisotropy to recent data from STAR collaboration we can exclude such a scenario, but instead show that the data favour strong flow as resulting from a hydrodynamical evolution.Comment: To appear in proceedings of Quark Matter 2001, 4 pages LaTeX, uses espcrc1.st

    Effects of Minijets on Hadronic Spectra and Azimuthal Harmonics in Au-Au Collisions at 200 GeV

    Full text link
    The production of hadrons in heavy-ion collisions at RHIC in the low transverse-momentum (pTp_T) region is investigated in the recombination model with emphasis on the effects of minijets on the azimuthal anisotropy. Since the study is mainly on the hadronization of partons at late time, the fluid picture is not used to trace the evolution of the system. The inclusive distributions at low pTp_T are determined as the recombination products of thermal partons. The pTp_T dependencies of both pion and proton have a common exponential factor apart from other dissimilar kinematic and resonance factors, because they are inherited from the same pool of thermal partons. Instead of the usual description based on hydrodynamics, the azimuthal anisotropy of the produced hadrons is explained as the consequence of the effects of minijets, either indirectly through the recombination of enhanced thermal partons in the vicinity of the trajectories of the semihard partons, or directly through thermal-shower recombination. Although our investigation is focussed on the single-particle distribution at midrapidity, we give reasons why a component in that distribution can be identified with the ridge, which together with the second harmonic v2v_2 is due to the semihard partons created near the medium surface that lead to calculable anisotropy in Ď•\phi. It is shown that the higher azimuthal harmonics, vnv_n, can also be well reproduced without reference to flow. The pTp_T and centrality dependencies of the higher harmonics are prescribed by the interplay between TT and TS recombination components. The implication of the success of this drastic departure from the conventional approach is discussed.Comment: 28 pages and 8 figures, more discussions and references adde

    Resolving the plasma profile via differential single inclusive suppression

    Get PDF
    The ability of experimental signatures to resolve the spatio-temporal profile of an expanding quark gluon plasma is studied. In particular, the single inclusive suppression of high momentum hadrons versus the centrality of a heavy-ion collision and with respect to the reaction plane in non-central collisions is critically examined. Calculations are performed in the higher twist formalism for the modification of the fragmentation functions. Radically different nuclear geometries are used. The influence of different initial gluon distributions as well as different temporal evolution scenarios on the single inclusive suppression of high momentum pions are outlined. It is demonstrated that the modification versus the reaction plane is quite sensitive to the initial spatial density. Such sensitivity remains even in the presence of a strong elliptic flow.Comment: 5 pages, 4 figures, RevTex

    Rapid hydrodynamic expansion in relativistic heavy-ion collisions

    Full text link
    Hydrodynamic expansion of the hot fireball created in relativistic Au-Au collisions at 200GeV in 3+1-dimensions is studied. We obtain a simultaneous, satisfactory description of the transverse momentum spectra, elliptic flow and pion correlation radii for different collision centralities and different rapidities. Early initial time of the evolution is required to reproduce the interferometry data, which provides a strong indication of the early onset of collectivity. We can also constraint the shape of the initial energy density in the beam direction, with a relatively high initial energy density at the center of the fireball.Comment: 10 pages, 13 fig

    Relativistic hydrodynamics for heavy-ion collisions

    Full text link
    Relativistic hydrodynamics is essential to our current understanding of nucleus-nucleus collisions at ultrarelativistic energies (current experiments at the Relativistic Heavy Ion Collider, forthcoming experiments at the CERN Large Hadron Collider). This is an introduction to relativistic hydrodynamics for graduate students. It includes a detailed derivation of the equations, and a description of the hydrodynamical evolution of a heavy-ion collisions. Some knowledge of thermodynamics and special relativity is assumed.Comment: Lectures given at the Advanced School on Quark-Gluon Plasma, Indian Institute of Technology, Bombay, 3-13 July, 200

    Dynamical freeze-out condition in ultrarelativistic heavy ion collisions

    Full text link
    We determine the decoupling surfaces for the hydrodynamic description of heavy ion collisions at RHIC and LHC by comparing the local hydrodynamic expansion rate with the microscopic pion-pion scattering rate. The pion pTp_T spectra for nuclear collisions at RHIC and LHC are computed by applying the Cooper-Frye procedure on the dynamical-decoupling surfaces, and compared with those obtained from the constant-temperature freeze-out surfaces. Comparison with RHIC data shows that the system indeed decouples when the expansion rate becomes comparable with the pion scattering rate. The dynamical decoupling based on the rates comparison also suggests that the effective decoupling temperature in central heavy ion collisions remains practically unchanged from RHIC to LHC.Comment: 7 pages, 9 figure

    Baryonic Strangeness and Related Susceptibilities in QCD

    Get PDF
    The ratios of off-diagonal to diagonal conserved charge susceptibilities e.g., chi_{BS}/chi_{S}, chi_{QS}/chi_{S}, related to the quark flavor susceptibilities, have proven to be discerning probes of the flavor carrying degrees of freedom in hot strongly interacting matter. Various constraining relations between the different susceptibilities are derived based on the Gell-Mann-Nishijima formula and the assumption of isospin symmetry. Using generic models of deconfined matter and results form lattice QCD, it is demonstrated that the flavor carrying degrees of freedom at a temperature above 1.5T_c are quark-like quasiparticles. A new observable related by isospin symmetry to C_{BS} = -3chi_{BS}/chi_{S} and equal to it in the baryon free regime is identified. This new observable, which is blind to neutral and non-strange particles, carries the potential of being measured in relativistic heavy-ion collisions.Comment: 12 pages, 5 figures, RevTex

    Early dissipation and viscosity

    Full text link
    We consider dissipative phenomena due to the relaxation of an initial anisotropic local pressure in the fireball created in relativistic heavy-ion collisions, both for the Bjorken boost-invariant case and for the azimuthally symmetric radial expansion with boost-invariance. The resulting increase of the entropy can be counterbalanced by a suitable retuning of the initial temperature. An increase of the transverse collective flow is observed. The influence of the shear viscosity on the longitudinal expansion is also studied. Viscosity reduces the cooling rate from the longitudinal work and counteracts the pressure gradients that accelerate the longitudinal flow.Comment: Presented at Quark Matter 2008, February 4-10, 2008, Jaipur Indi

    Emission angle dependent HBT at RHIC and beyond

    Get PDF
    We study the geometrical features of non-central heavy ion collisions throughout their dynamical evolution from equilibration to thermal freeze-out within a hydrodynamic picture. We discuss resulting observables, in particular the emission angle dependence of the HBT radii and the relation of these oscillations to the geometry at the final stage.Comment: 4 pages, 4 figures, proceedings for Quark Matter 200

    Elliptic flow in Pb+Pb collisions at sqrt{s_{NN}} = 2.76 TeV: hybrid model assessment of the first data

    Full text link
    We analyze the elliptic flow parameter v_2 in Pb+Pb collisions at sqrt{s_{NN}} = 2.76 TeV and in Au+Au collisions at sqrt{s_{NN}} =200 GeV using a hybrid model in which the evolution of the quark gluon plasma is described by ideal hydrodynamics with a state-of-the-art lattice QCD equation of state, and the subsequent hadronic stage by a hadron cascade model. For initial conditions, we employ Monte-Carlo versions of the Glauber and the Kharzeev-Levin-Nardi models and compare results with each other. We demonstrate that the differential elliptic flow v_2(p_T) hardly changes when the collision energy increases, whereas the integrated v_2 increases due to the enhancement of mean transverse momentum. The amount of increase of both v_2 and mean p_T depends significantly on the model of initialization.Comment: 5 pages, 5 figure
    • …
    corecore