31,584 research outputs found
On Multi-Step Sensor Scheduling via Convex Optimization
Effective sensor scheduling requires the consideration of long-term effects
and thus optimization over long time horizons. Determining the optimal sensor
schedule, however, is equivalent to solving a binary integer program, which is
computationally demanding for long time horizons and many sensors. For linear
Gaussian systems, two efficient multi-step sensor scheduling approaches are
proposed in this paper. The first approach determines approximate but close to
optimal sensor schedules via convex optimization. The second approach combines
convex optimization with a \BB search for efficiently determining the optimal
sensor schedule.Comment: 6 pages, appeared in the proceedings of the 2nd International
Workshop on Cognitive Information Processing (CIP), Elba, Italy, June 201
Experimental research on the development of Ceratium hirundinella O.F.Muller [Translation from: Z.Bot. 14, 337-371, 1922]
The most important aim of this study lay in filling in the great gap in our knowledge of the processes of germination in the Ceratium cyst and the early developmental stages in the standing stock of Ceratium hirundinella. contained rich cysts, we now succeeded extraordinarily well in pursuing the consistent development of Ceratium from the cyst to the completed cell. A series of experiments were carried out on the cysts and the juvenile stages of Ceratium, which showed very interesting results. The author presents in a general descriptive part the normal processes of germination in Ceratium cysts and the development of the juvenile stages in order to show in an experimental part the changes in form of C. hirundinella under the influence of temperature, light and varying salinities
Enhancing Decision Tree based Interpretation of Deep Neural Networks through L1-Orthogonal Regularization
One obstacle that so far prevents the introduction of machine learning models
primarily in critical areas is the lack of explainability. In this work, a
practicable approach of gaining explainability of deep artificial neural
networks (NN) using an interpretable surrogate model based on decision trees is
presented. Simply fitting a decision tree to a trained NN usually leads to
unsatisfactory results in terms of accuracy and fidelity. Using L1-orthogonal
regularization during training, however, preserves the accuracy of the NN,
while it can be closely approximated by small decision trees. Tests with
different data sets confirm that L1-orthogonal regularization yields models of
lower complexity and at the same time higher fidelity compared to other
regularizers.Comment: 8 pages, 18th IEEE International Conference on Machine Learning and
Applications (ICMLA) 201
Compensating linkage for main rotor control
A compensating linkage for the rotor control system on rotary wing aircraft is described. The main rotor and transmission are isolated from the airframe structure by clastic suspension. The compensating linkage prevents unwanted signal inputs to the rotor control system caused by relative motion of the airframe structure and the main rotor and transmission
Fe 1, Cr 1 and Cr 2 gf-values from shock-tube measurements
Fe and Cr oscillator strength and statistical population factors measured by absorption technique from shock heated ga
FE I, CR I and CR II GF values from shock tube measurements
Absorption spectra determination of iron and chromium Fermi-Dirac values by shock heated argon tub
Photoelectron spectroscopy of NpPd3 and PuPd3
We present the results of x-ray and ultraviolet photoelectron spectroscopy of NpPd3 and PuPd3. The spectra indicate that for both compounds, the 5f electrons are well localized on the actinide sites. Comparison with bulk measurements indicates that for NpPd3 the electrons have a valence of Np3+ and thus a ground state 5f4 with a Hund's rules 5I4 configuration. Similarly for PuPd3, we find a Pu3+ valence, 5f5 ground state and a Hund's rules 6H5/2 configuration
Discovery of the secondary eclipse of HAT-P-11 b
We report the detection of the secondary eclipse of HAT-P-11 b, a
Neptune-sized planet orbiting an active K4 dwarf. Using all available
short-cadence data of the Kepler mission, we derive refined planetary ephemeris
increasing their precision by more than an order of magnitude. Our simultaneous
primary and secondary transit modeling results in improved transit and orbital
parameters. In particular, the precise timing of the secondary eclipse allows
to pin down the orbital eccentricity to . The
secondary eclipse depth of ppm corresponds to a
detection and results in a geometric albedo of for
HAT-P-11 b, close to Neptune's value, which may indicate further resemblances
between these two bodies. Due to the substantial orbital eccentricity, the
planetary equilibrium temperature is expected to change significantly with
orbital position and ought to vary between K and K,
depending on the details of heat redistribution in the atmosphere of HAT-P-11
b.Comment: Accepted by A&A, 27/10/201
- …
