1,551 research outputs found

    The very fast evolution of Sakurai's object

    Full text link
    V4334 Sgr (a.k.a. Sakurai's object) is the central star of an old planetary nebula that underwent a very late thermal pulse a few years before its discovery in 1996. We have been monitoring the evolution of the optical emission line spectrum since 2001. The goal is to improve the evolutionary models by constraining them with the temporal evolution of the central star temperature. In addition the high resolution spectral observations obtained by X-shooter and ALMA show the temporal evolution of the different morphological components.Comment: 2 pages, 2 figures to appear in the Proceedings of the IAU Symp. 323: "Planetary nebulae: Multi-wavelength probes of stellar and galactic evolution". Eds. X.-W. Liu, L. Stanghellini and A. Karaka

    On the Evolved Nature of CK Vul

    Get PDF
    Original paper can be found at: http://www.astrosociety.org/pubs/cs/381.html Copyright ASPCK Vul was classified as the oldest observed nova. Recent studies have proven however, that CK Vul cannot be unambiguously classified as any known kind of eruptive variable. We present the optical and radio observations of the remnants of the eruption of CK Vul in the year 1670 in order to discuss possible scenarios for this object. We have measured the proper motion which proves that the nebula is attributed to the star observed during its 1670−1672 brightening. A large bipolar nebula of 70 arcsec is discovered in a deep Hα image. Radio observations reveal a barely resolved source placed in the expansion center of the ejecta

    The Real-Time Evolution of Sakurai's Star (V4334 Sgr) and other (V)LTP Objects

    Full text link
    We report on the progress of our on-going campaign to monitor the evolution of the VLTP objects V4334 Sgr and V605 Aql, as well as the suspected (V)LTP object CK Vul. V4334 Sgr does not show signs of increased ionization compared to our previous observations in 2004. We obtained the first radio detection of V605 Aql, indicating a strong increase in radio flux since 1987. We also present the first radio detection of CK Vul and discuss the expansion of the material ejected during the 1670 event.Comment: 4 pages, 2 figures in eps format, IAU symp. 234: `Planetary Nebulae in our Galaxy and Beyond', eds. M. J. Barlow & R. H. Mende

    H, He-like recombination spectra I : l-changing collisions for hydrogen

    Get PDF
    Hydrogen and helium emission lines in nebulae form by radiative recombination. This is a simple process which, in principle, can be described to very high precision. Ratios of He I and H I emission lines can be used to measure the He+/H+ abundance ratio to the same precision as the recombination rate coefficients. This paper investigates the controversy over the correct theory to describe dipole l-changing collisions (nl → nl0 = l ±1) between energy-degenerate states within an n-shell. The work of Pengelly & Seaton (1964) has, for half-a-century, been considered the definitive study which “solved” the problem. Recent work by Vrinceanu et al. (2012) recommended the use of rate coefficients from a semi-classical approximation which are nearly an order of magnitude smaller than those of Pengelly & Seaton (1964), with the result that significantly higher densities are needed for the nl populations to come into local thermodynamic equilibrium. Here, we compare predicted H I emissivities from the two works and find widespread differences, of up to ≈ 10%. This far exceeds the 1% precision required to obtain the primordial He/H abundance ratio from observations so as to constrain Big Bang cosmologies. We recommend using the rate coefficients of Pengelly & Seaton (1964) for l-changing collisions, to describe the H recombination spectrum, based-on their quantum mechanical representation of the long-range dipole interaction

    Herschel spectral-mapping of the Helix Nebula (NGC 7293): Extended CO photodissociation and OH+ emission

    Full text link
    The Helix Nebula (NGC 7293) is the closest planetary nebulae. Therefore, it is an ideal template for photochemical studies at small spatial scales in planetary nebulae. We aim to study the spatial distribution of the atomic and the molecular gas, and the structure of the photodissociation region along the western rims of the Helix Nebula as seen in the submillimeter range with Herschel. We use 5 SPIRE FTS pointing observations to make atomic and molecular spectral maps. We analyze the molecular gas by modeling the CO rotational lines using a non-local thermodynamic equilibrium (non-LTE) radiative transfer model. For the first time, we have detected extended OH+ emission in a planetary nebula. The spectra towards the Helix Nebula also show CO emission lines (from J= 4 to 8), [NII] at 1461 GHz from ionized gas, and [CI] (2-1), which together with the OH+ lines, trace extended CO photodissociation regions along the rims. The estimated OH+ column density is (1-10)x1e12 cm-2. The CH+ (1-0) line was not detected at the sensitivity of our observations. Non-LTE models of the CO excitation were used to constrain the average gas density (n(H2)=(1-5)x1e5 cm-3) and the gas temperature (Tk= 20-40 K). The SPIRE spectral-maps suggest that CO arises from dense and shielded clumps in the western rims of the Helix Nebula whereas OH+ and [CI] lines trace the diffuse gas and the UV and X-ray illuminated clumps surface where molecules reform after CO photodissociation. [NII] traces a more diffuse ionized gas component in the interclump medium.Comment: Accepted for publication in Astronomy and Astrophysic
    corecore