1,035 research outputs found

    Design study for LANDSAT D attitude control system

    Get PDF
    A design and performance evaluation is presented for the LANDSAT D attitude control system (ACS). Control and configuration of the gimballed Ku-band antenna system for communication with the tracking and data relay satellite (TDRS). Control of the solar array drive considered part of the ACS is also addressed

    Design study for LANDSAT-D attitude control system

    Get PDF
    The gimballed Ku-band antenna system for communication with TDRS was studied. By means of an error analysis it was demonstrated that the antenna cannot be open loop pointed to TDRS by an onboard programmer, but that an autotrack system was required. After some tradeoffs, a two-axis, azimuth-elevation type gimbal configuration was recommended for the antenna. It is shown that gimbal lock only occurs when LANDSAT-D is over water where a temporary loss of the communication link to TDRS is of no consequence. A preliminary gimbal control system design is also presented. A digital computer program was written that computes antenna gimbal angle profiles, assesses percent antenna beam interference with the solar array, and determines whether the spacecraft is over land or water, a lighted earth or a dark earth, and whether the spacecraft is in eclipse

    Femto-Photography of Protons to Nuclei with Deeply Virtual Compton Scattering

    Get PDF
    Developments in deeply virtual Compton scattering allow the direct measurements of scattering amplitudes for exchange of a highly virtual photon with fine spatial resolution. Real-space images of the target can be obtained from this information. Spatial resolution is determined by the momentum transfer rather than the wavelength of the detected photon. Quantum photographs of the proton, nuclei, and other elementary particles with resolution on the scale of a fraction of a femtometer is feasible with existing experimental technology.Comment: To be published in Physical Review D. Replaces previous version with minor changes in presentatio

    Quantized Orbits and Resonant Transport

    Full text link
    A tight binding representation of the kicked Harper model is used to obtain an integrable semiclassical Hamiltonian consisting of degenerate "quantized" orbits. New orbits appear when renormalized Harper parameters cross integer multiples of π/2\pi/2. Commensurability relations between the orbit frequencies are shown to correlate with the emergence of accelerator modes in the classical phase space of the original kicked problem. The signature of this resonant transport is seen in both classical and quantum behavior. An important feature of our analysis is the emergence of a natural scaling relating classical and quantum couplings which is necessary for establishing correspondence.Comment: REVTEX document - 8 pages + 3 postscript figures. Submitted to Phys.Rev.Let

    On the Green's Function of the almost-Mathieu Operator

    Full text link
    The square tight-binding model in a magnetic field leads to the almost-Mathieu operator which, for rational fields, reduces to a q×qq\times q matrix depending on the components μ\mu, ν\nu of the wave vector in the magnetic Brillouinzone. We calculate the corresponding Green's function without explicit knowledge of eigenvalues and eigenfunctions and obtain analytical expressions for the diagonal and the first off-diagonal elements; the results which are consistent with the zero magnetic field case can be used to calculate several quantities of physical interest (e. g. the density of states over the entire spectrum, impurity levels in a magnetic field).Comment: 9 pages, 3 figures corrected some minor errors and typo

    Hysteresis effect due to the exchange Coulomb interaction in short-period superlattices in tilted magnetic fields

    Full text link
    We calculate the ground-state of a two-dimensional electron gas in a short-period lateral potential in magnetic field, with the Coulomb electron-electron interaction included in the Hartree-Fock approximation. For a sufficiently short period the dominant Coulomb effects are determined by the exchange interaction. We find numerical solutions of the self-consistent equations that have hysteresis properties when the magnetic field is tilted and increased, such that the perpendicular component is always constant. This behavior is a result of the interplay of the exchange interaction with the energy dispersion and the spin splitting. We suggest that hysteresis effects of this type could be observable in magneto-transport and magnetization experiments on quantum-wire and quantum-dot superlattices.Comment: 3 pages, 3 figures, Revtex, to appear in Phys. Rev.

    Electronic Band Structure In A Periodic Magnetic Field

    Full text link
    We analyze the energy band structure of a two-dimensional electron gas in a periodic magnetic field of a longitudinal antiferromagnet by considering a simple exactly solvable model. Two types of states appear: with a finite and infinitesimal longitudinal mobility. Both types of states are present at a generic Fermi surface. The system exhibits a transition to an insulating regime with respect to the longitudinal current, if the electron density is sufficiently low.Comment: 8 pages, 5 figures; to appear in Phys. Rev. B '9

    Deuteron Electromagnetic Form Factors in the Intermediate Energy Region

    Get PDF
    Based on a Perturbative QCD analysis of the deuteron form factor, a model for the reduced form factor is suggested. The numerical result is consistent with the data in the intermediate energy region.Comment: 9 pages, to appear in Phys.Rev.

    Effects of Electron Correlations on Hofstadter Spectrum

    Full text link
    By allowing interactions between electrons, a new Harper's equation is derived to examine the effects of electron correlations on the Hofstadter energy spectra. It is shown that the structure of the Hofstadter butterfly ofr the system of correlated electrons is modified only in the band gaps and the band widths, but not in the characteristics of self-similarity and the Cantor set.Comment: 13 pages, 5 Postscript figure

    The Flux-Phase of the Half-Filled Band

    Full text link
    The conjecture is verified that the optimum, energy minimizing magnetic flux for a half-filled band of electrons hopping on a planar, bipartite graph is π\pi per square plaquette. We require {\it only} that the graph has periodicity in one direction and the result includes the hexagonal lattice (with flux 0 per hexagon) as a special case. The theorem goes beyond previous conjectures in several ways: (1) It does not assume, a-priori, that all plaquettes have the same flux (as in Hofstadter's model); (2) A Hubbard type on-site interaction of any sign, as well as certain longer range interactions, can be included; (3) The conclusion holds for positive temperature as well as the ground state; (4) The results hold in D2D \geq 2 dimensions if there is periodicity in D1D-1 directions (e.g., the cubic lattice has the lowest energy if there is flux π\pi in each square face).Comment: 9 pages, EHL14/Aug/9
    corecore