71 research outputs found

    Are substitution rates and RNA editing correlated?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>RNA editing is a post-transcriptional process that, in seed plants, involves a cytosine to uracil change in messenger RNA, causing the translated protein to differ from that predicted by the DNA sequence. RNA editing occurs extensively in plant mitochondria, but large differences in editing frequencies are found in some groups. The underlying processes responsible for the distribution of edited sites are largely unknown, but gene function, substitution rate, and gene conversion have been proposed to influence editing frequencies.</p> <p>Results</p> <p>We studied five mitochondrial genes in the monocot order Alismatales, all showing marked differences in editing frequencies among taxa. A general tendency to lose edited sites was observed in all taxa, but this tendency was particularly strong in two clades, with most of the edited sites lost in parallel in two different areas of the phylogeny. This pattern is observed in at least four of the five genes analyzed. Except in the groups that show an unusually low editing frequency, the rate of C-to-T changes in edited sites was not significantly higher that in non-edited 3<sup>rd </sup>codon positions. This may indicate that selection is not actively removing edited sites in nine of the 12 families of the core Alismatales. In all genes but <it>ccm</it>B, a significant correlation was found between frequency of change in edited sites and synonymous substitution rate. In general, taxa with higher substitution rates tend to have fewer edited sites, as indicated by the phylogenetically independent correlation analyses. The elimination of edited sites in groups that lack or have reduced levels of editing could be a result of gene conversion involving a cDNA copy (retroprocessing). If so, this phenomenon could be relatively common in the Alismatales, and may have affected some groups recurrently. Indirect evidence of retroprocessing without a necessary correlation with substitution rate was found mostly in families Alismataceae and Hydrocharitaceae (e.g., groups that suffered a rapid elimination of all their edited sites, without a change in substitution rate).</p> <p>Conclusions</p> <p>The effects of substitution rate, selection, and/or gene conversion on the dynamics of edited sites in plant mitochondria remain poorly understood. Although we found an inverse correlation between substitution rate and editing frequency, this correlation is partially obscured by gene retroprocessing in lineages that have lost most of their edited sites. The presence of processed paralogs in plant mitochondria deserves further study, since most evidence of their occurrence is circumstantial.</p

    The Mitochondrial Genome of the Lycophyte Huperzia squarrosa: The Most Archaic Form in Vascular Plants

    Get PDF
    Mitochondrial genomes have maintained some bacterial features despite their residence within eukaryotic cells for approximately two billion years. One of these features is the frequent presence of polycistronic operons. In land plants, however, it has been shown that all sequenced vascular plant chondromes lack large polycistronic operons while bryophyte chondromes have many of them. In this study, we provide the completely sequenced mitochondrial genome of a lycophyte, from Huperzia squarrosa, which is a member of the sister group to all other vascular plants. The genome, at a size of 413,530 base pairs, contains 66 genes and 32 group II introns. In addition, it has 69 pseudogene fragments for 24 of the 40 protein- and rRNA-coding genes. It represents the most archaic form of mitochondrial genomes of all vascular plants. In particular, it has one large conserved gene cluster containing up to 10 ribosomal protein genes, which likely represents a polycistronic operon but has been disrupted and greatly reduced in the chondromes of other vascular plants. It also has the least rearranged gene order in comparison to the chondromes of other vascular plants. The genome is ancestral in vascular plants in several other aspects: the gene content resembling those of charophytes and most bryophytes, all introns being cis-spliced, a low level of RNA editing, and lack of foreign DNA of chloroplast or nuclear origin

    The role of coxI -associated repeated sequences in plant mitochondrial DNA rearrangements and radish cytoplasmic male sterility

    Full text link
    The gene coxI , encoding subunit I of mitochondrial cytochrome c oxidase, has been characterized from the normal (fertile) and Ogura (male-sterile) cytoplasms of radish to determine if a previously identified mitochondrial DNA rearrangement, and its associated transcriptional differences, could play a role in Ogura cytoplasmic male sterility (CMS). The normal and Ogura loci are virtually identical for 2.8 kb, including a 527-codon open reading frame whose product is approximately 95% identical to other plant COXI polypeptides. A rearrangement 120 bp 5′ to the coding region results in different 5′ transcript termini for the two genes. A comparison of several crucifer mitochondrial DNAs indicates that this rearrangement also occurs in the normal radish cytoplasm and is, therefore, not involved in Ogura CMS. Sequences present at the coxI locus belong to at least two different dispersed repeat families, members of which are also associated with other rearranged genes in radish.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46974/1/294_2004_Article_BF00336485.pd

    Analysis of a short tandem repeat locus on chromosome 19 (D19S253)

    No full text
    A tetranucleotide tandem repeat locus on chromosome 19 (D19S253) was analysed. PCR products were detected by denaturing polyacrylamide gels with fluorescent-based technology. This study has confirmed a polymorphism with 9 alleles ranging from 209 to 241 bp with a simple repeat structure arranged from 7 to 15 repeats. Family studies confirmed mendelian inheritance of alleles. The efficiency on DNA extracted from bloodstains and cigarette butts has been evaluated. The protocol has shown sensitivity and reproducibility
    corecore