36 research outputs found

    Mass transfer in a nanoscale material enhanced by an opposing flux

    No full text

    Assessing guest diffusivities in porous hosts from transient concentration profiles

    No full text
    Using the short-chain-length alkanes from ethane to n-butane as guest molecules, transient concentration profiles during uptake or release (via interference microscopy) and tracer exchange (via IR microimaging) in Zn(tbip), a particularly stable representative of a novel family of nanoporous materials (the metal organic frameworks), were recorded. Analyzing the spatiotemporal dependence of the profiles provides immediate access to the transport diffusivities and self-diffusivities, yielding a data basis of unprecedented reliability for mass transfer in nanoporous materials. As a particular feature of the system, self- and transport diffusivities may be combined to estimate the rate of mutual passages of the guest molecules in the chains of pore segments, thus quantifying departure from a genuine single-file system

    Microimaging of transient guest profiles to monitor mass transfer in nanoporous materials

    No full text
    The intense interactions of guest molecules with the pore walls of nanoporous materials is the subject of continued fundamental research. Stimulated by their thermal energy, the guest molecules in these materials are subject to a continuous, irregular motion, referred to as diffusion. Diffusion, which is omnipresent in nature, influences the efficacy of nanoporous materials in reaction and separation processes. The recently introduced techniques of microimaging by interference and infrared microscopy provide us with a wealth of information on diffusion, hitherto inaccessible from commonly used techniques. Examples include the determination of surface barriers and the sticking coefficient's analogue, namely the probability that, on colliding with the particle surface, a molecule may continue its diffusion path into the interior. Microimaging is further seen to open new vistas in multicomponent guest diffusion ( including the detection of a reversal in the preferred diffusion pathways), in guest-induced phase transitions in nanoporous materials and in matching the results of diffusion studies under equilibrium and nonequilibrium conditions
    corecore