2,924 research outputs found

    Cation Transport in Polymer Electrolytes: A Microscopic Approach

    Full text link
    A microscopic theory for cation diffusion in polymer electrolytes is presented. Based on a thorough analysis of molecular dynamics simulations on PEO with LiBF4_4 the mechanisms of cation dynamics are characterised. Cation jumps between polymer chains can be identified as renewal processes. This allows us to obtain an explicit expression for the lithium ion diffusion constant D_{Li} by invoking polymer specific properties such as the Rouse dynamics. This extends previous phenomenological and numerical approaches. In particular, the chain length dependence of D_{Li} can be predicted and compared with experimental data. This dependence can be fully understood without referring to entanglement effects.Comment: 4 pages, 4 figures, Physical Review Letters in pres

    Nonlinear Ionic Conductivity of Thin Solid Electrolyte Samples: Comparison between Theory and Experiment

    Full text link
    Nonlinear conductivity effects are studied experimentally and theoretically for thin samples of disordered ionic conductors. Following previous work in this field the {\it experimental nonlinear conductivity} of sodium ion conducting glasses is analyzed in terms of apparent hopping distances. Values up to 43 \AA are obtained. Due to higher-order harmonic current density detection, any undesired effects arising from Joule heating can be excluded. Additionally, the influence of temperature and sample thickness on the nonlinearity is explored. From the {\it theoretical side} the nonlinear conductivity in a disordered hopping model is analyzed numerically. For the 1D case the nonlinearity can be even handled analytically. Surprisingly, for this model the apparent hopping distance scales with the system size. This result shows that in general the nonlinear conductivity cannot be interpreted in terms of apparent hopping distances. Possible extensions of the model are discussed.Comment: 7 pages, 6 figure

    Non Markovian persistence in the diluted Ising model at criticality

    Full text link
    We investigate global persistence properties for the non-equilibrium critical dynamics of the randomly diluted Ising model. The disorder averaged persistence probability Pcˉ(t)\bar{{P}_c}(t) of the global magnetization is found to decay algebraically with an exponent θc\theta_c that we compute analytically in a dimensional expansion in d=4ϵd=4-\epsilon. Corrections to Markov process are found to occur already at one loop order and θc\theta_c is thus a novel exponent characterizing this disordered critical point. Our result is thoroughly compared with Monte Carlo simulations in d=3d=3, which also include a measurement of the initial slip exponent. Taking carefully into account corrections to scaling, θc\theta_c is found to be a universal exponent, independent of the dilution factor pp along the critical line at Tc(p)T_c(p), and in good agreement with our one loop calculation.Comment: 7 pages, 4 figure

    Finite-Size Effects in a Supercooled Liquid

    Full text link
    We study the influence of the system size on various static and dynamic properties of a supercooled binary Lennard-Jones liquid via computer simulations. In this way, we demonstrate that the treatment of systems as small as N=65 particles yields relevant results for the understanding of bulk properties. Especially, we find that a system of N=130 particles behaves basically as two non-interacting systems of half the size.Comment: Proceedings of the III Workshop on Non Equilibrium Phenomena in Supercooled Fluids, Glasses and Amorphous Materials, Sep 2002, Pis

    Energy landscape, two-level systems and entropy barriers in Lennard-Jones clusters

    Full text link
    We develop an efficient numerical algorithm for the identification of a large number of saddle points of the potential energy function of Lennard- Jones clusters. Knowledge of the saddle points allows us to find many thousand adjacent minima of clusters containing up to 80 argon atoms and to locate many pairs of minima with the right characteristics to form two-level systems (TLS). The true TLS are singled out by calculating the ground-state tunneling splitting. The entropic contribution to all barriers is evaluated and discussed.Comment: 4 pages, RevTex, 2 PostScript figure

    Fast vectorized algorithm for the Monte Carlo Simulation of the Random Field Ising Model

    Full text link
    An algoritm for the simulation of the 3--dimensional random field Ising model with a binary distribution of the random fields is presented. It uses multi-spin coding and simulates 64 physically different systems simultaneously. On one processor of a Cray YMP it reaches a speed of 184 Million spin updates per second. For smaller field strength we present a version of the algorithm that can perform 242 Million spin updates per second on the same machine.Comment: 13 pp., HLRZ 53/9

    Origin of non-exponential relaxation in a crystalline ionic conductor: a multi-dimensional 109Ag NMR study

    Full text link
    The origin of the non-exponential relaxation of silver ions in the crystalline ion conductor Ag7P3S11 is analyzed by comparing appropriate two-time and three-time 109Ag NMR correlation functions. The non-exponentiality is due to a rate distribution, i.e., dynamic heterogeneities, rather than to an intrinsic non-exponentiality. Thus, the data give no evidence for the relevance of correlated back-and-forth jumps on the timescale of the silver relaxation.Comment: 4 pages, 3 figure

    The potential energy landscape of a model glass former: thermodynamics, anharmonicities, and finite size effects

    Full text link
    It is possible to formulate the thermodynamics of a glass forming system in terms of the properties of inherent structures, which correspond to the minima of the potential energy and build up the potential energy landscape in the high-dimensional configuration space. In this work we quantitatively apply this general approach to a simulated model glass-forming system. We systematically vary the system size between N=20 and N=160. This analysis enables us to determine for which temperature range the properties of the glass former are governed by the regions of the configuration space, close to the inherent structures. Furthermore, we obtain detailed information about the nature of anharmonic contributions. Moreover, we can explain the presence of finite size effects in terms of specific properties of the energy landscape. Finally, determination of the total number of inherent structures for very small systems enables us to estimate the Kauzmann temperature
    corecore