4 research outputs found
WASP-131 b with ESPRESSO – I. A bloated sub-Saturn on a polar orbit around a differentially rotating solar-type star
In this paper, we present observations of two high-resolution transit data sets obtained with ESPRESSO of the bloated sub-Saturn planet WASP-131 b. We have simultaneous photometric observations with NGTS and EulerCam. In addition, we utilized photometric light curves from TESS, WASP, EulerCam, and TRAPPIST of multiple transits to fit for the planetary parameters and update the ephemeris. We spatially resolve the stellar surface of WASP-131 utilizing the Reloaded Rossiter McLaughlin technique to search for centre-to-limb convective variations, stellar differential rotation, and to determine the star–planet obliquity for the first time. We find WASP-131 is misaligned on a nearly retrograde orbit with a projected obliquity of . In addition, we determined a stellar differential rotation shear of α = 0.61 ± 0.06 and disentangled the stellar inclination ( ) from the projected rotational velocity, resulting in an equatorial velocity of km s−1. In turn, we determined the true 3D obliquity of , meaning the planet is on a perpendicular/polar orbit. Therefore, we explored possible mechanisms for the planetary system’s formation and evolution. Finally, we searched for centre-to-limb convective variations where there was a null detection, indicating that centre-to-limb convective variations are not prominent in this star or are hidden within red noise.</p
Exploring the stellar surface phenomena of WASP-52 and HAT-P-30 with ESPRESSO
We analyse spectroscopic and photometric transits of the hot Jupiters WASP-52 b and HAT-P30 b obtained with ESPRESSO, Eulercam and NGTS for both targets, and additional TESS data for HAT-P-30. Our goal is to update the system parameters and refine our knowledge of the host star surfaces. For WASP-52, the companion planet has occulted starspots in the past, and as such our aim was to use the reloaded Rossiter-McLaughlin technique to directly probe its starspot properties. Unfortunately, we find no evidence for starspot occultations in the datasets herein. Additionally, we searched for stellar surface differential rotation (DR) and any centre-to-limb variation (CLV) due to convection, but return a null detection of both. This is unsurprising for WASP-52, given its relatively cool temperature, high magnetic activity (which leads to lower CLV), and projected obliquity near 0 (meaning the transit chord is less likely to cross several stellar latitudes). For HAT-P-30, this result was more surprising given its hotter effective temperature, lower magnetic field, and high projected obliquity (near 70). To explore the reasons behind the null DR and CLV detection for HAT-P-30, we simulated a variety of scenarios. We find that either the CLV present on HAT-P-30 is below the solar level or the presence of DR prevents a CLV detection given the precision of the data herein. A careful treatment of both DR and CLV is required, especially for systems with high impact factors, due to potential degeneracies between the two. Future observations and/or a sophisticated treatment of the red noise present in the data (likely due to granulation) is required to refine the DR and CLV for these particular systems; such observations would also present another opportunity to try to examine starspots on WASP-52
An old warm Jupiter orbiting the metal-poor G-dwarf TOI-5542
We report the discovery of a 1.32-0.10+0.10 MJup planet orbiting on a 75.12 day period around the G3V 10.8-3.6+2.1 Gyr old star TOI-5542 (TIC 466206508; TYC 9086-1210-1). The planet was first detected by the Transiting Exoplanet Survey Satellite (TESS) as a single transit event in TESS Sector 13. A second transit was observed 376 days later in TESS Sector 27. The planetary nature of the object has been confirmed by ground-based spectroscopic and radial velocity observations from the CORALIE and HARPS spectrographs. A third transit event was detected by the ground-based facilities NGTS, EulerCam, and SAAO. We find the planet has a radius of 1.009-0.035+0.036 RJup and an insolation of 9.6-0.8+0.9 S⊕, along with a circular orbit that most likely formed via disk migration or in situ formation, rather than high-eccentricity migration mechanisms. Our analysis of the HARPS spectra yields a host star metallicity of [Fe/H] = -0.21 ± 0.08, which does not follow the traditional trend of high host star metallicity for giant planets and does not bolster studies suggesting a difference among low- and high-mass giant planet host star metallicities. Additionally, when analyzing a sample of 216 well-characterized giant planets, we find that both high masses (4 MJup 10 days) and hot (P 0.1). TOI-5542b is one of the oldest known warm Jupiters and it is cool enough to be unaffected by inflation due to stellar incident flux, making it a valuable contribution in the context of planetary composition and formation studies
Photo-dynamical characterisation of the TOI-178 resonant chain
Context. The TOI-178 system consists of a nearby, late-K-dwarf with six transiting planets in the super-Earth to mini-Neptune regime, with radii ranging from to 2.9 R⊕ and orbital periods between 1.9 and 20.7 days. All the planets, but the innermost one, form a chain of Laplace resonances. The fine-tuning and fragility of such orbital configurations ensure that no significant scattering or collision event has taken place since the formation and migration of the planets in the protoplanetary disc, thereby providing important anchors for planet formation models.
Aims. We aim to improve the characterisation of the architecture of this key system and, in particular, the masses and radii of its planets. In addition, since this system is one of the few resonant chains that can be characterised by both photometry and radial velocities, we propose to use it as a test bench for the robustness of the planetary mass determination with each technique.
Methods. We performed a global analysis of all the available photometry from CHEOPS, TESS and NGTS, and radial velocity from ESPRESSO, using a photo-dynamical modelling of the light curve. We also tried different sets of priors on the masses and eccentricity, as well as different stellar activity models, to study their effects on the masses estimated by transit-timing variations (TTVs) and radial velocities (RVs).
Results. We demonstrate how stellar activity prevents a robust mass estimation for the three outer planets using radial velocity data alone. We also show that our joint photo-dynamical and radial velocity analysis has resulted in a robust mass determination for planets c to , with precision of ~ 12% for the mass of planet c, and better than 10% for planets d to . The new precisions on the radii range from 2 to 3%. The understanding of this synergy between photometric and radial velocity measurements will be valuable for the PLATO mission. We also show that TOI-178 is indeed currently locked in the resonant configuration, librating around an equilibrium of the chain.</p