155 research outputs found

    CT texture analysis can help differentiate between malignant and benign lymph nodes in the mediastinum in patients suspected for lung cancer

    Get PDF
    BACKGROUND: In patients with non-small-cell lung carcinoma NSCLC the lymph node staging in the mediastinum is important due to impact on management and prognosis. Computed tomography texture analysis (CTTA) is a postprocessing technique that can evaluate the heterogeneity of marked regions in images. PURPOSE: To evaluate if CTTA can differentiate between malignant and benign lymph nodes in a cohort of patients with suspected lung cancer. MATERIAL AND METHODS: With tissue sampling as reference standard, 46 lymph nodes from 29 patients were analyzed using CTTA. For each lymph node, CTTA was performed using a research software "TexRAD" by drawing a region of interest (ROI) on all available axial contrast-enhanced computed tomography (CT) slices covering the entire volume of the lymph node. Lymph node CTTA comprised image filtration-histogram analysis undertakes two stages: the first step comprised an application of a Laplacian of Gaussian filter to highlight fine to coarse textures within the ROI, followed by a quantification of textures via histogram analysis using mean gray-level intensity from the entire volume of the lymph nodes. RESULTS: CTTA demonstrated a statistically significant difference between the malignant and the benign lymph nodes (P = 0.001), and by binary logistic regression we obtained a sensitivity of 53% and specificity of 97% in the test population. The area under the receiver operating curve was 83.4% and reproducibility was excellent. CONCLUSION: CTTA may be helpful in differentiating between malignant and benign lymph nodes in the mediastinum in patients suspected for lung cancer, with a low intra-observer variance

    Gene expression profiling of mesenteric lymph nodes from sheep with natural scrapie

    Get PDF
    Background: Prion diseases are characterized by the accumulation of the pathogenic PrPSc protein, mainly in the brain and the lymphoreticular system. Although prions multiply/accumulate in the lymph nodes without any detectable pathology, transcriptional changes in this tissue may reflect biological processes that contribute to the molecular pathogenesis of prion diseases. Little is known about the molecular processes that occur in the lymphoreticular system in early and late stages of prion disease. We performed a microarray-based study to identify genes that are differentially expressed at different disease stages in the mesenteric lymph node of sheep naturally infected with scrapie. Oligo DNA microarrays were used to identify gene-expression profiles in the early/middle (preclinical) and late (clinical) stages of the disease. Results: In the clinical stage of the disease, we detected 105 genes that were differentially expressed (=2-fold change in expression). Of these, 43 were upregulated and 62 downregulated as compared with age-matched negative controls. Fewer genes (50) were differentially expressed in the preclinical stage of the disease. Gene Ontology enrichment analysis revealed that the differentially expressed genes were largely associated with the following terms: glycoprotein, extracellular region, disulfide bond, cell cycle and extracellular matrix. Moreover, some of the annotated genes could be grouped into 3 specific signaling pathways: focal adhesion, PPAR signaling and ECM-receptor interaction. We discuss the relationship between the observed gene expression profiles and PrPSc deposition and the potential involvement in the pathogenesis of scrapie of 7 specific differentially expressed genes whose expression levels were confirmed by real time-PCR. Conclusions: The present findings identify new genes that may be involved in the pathogenesis of natural scrapie infection in the lymphoreticular system, and confirm previous reports describing scrapie-induced alterations in the expression of genes involved in protein misfolding, angiogenesis and the oxidative stress response. Further studies will be necessary to determine the role of these genes in prion replication, dissemination and in the response of the organism to this disease

    Complete genome sequences of Incl1 Plasmids carrying extended-spectrum B-Lactamase genes

    Get PDF
    Extended spectrum beta-lactamases (ESBLs) confer resistance to clinically relevant antibiotics. Often, the resistance genes are carried by conjugative plasmids which are responsible for dissemination. Five IncI1 plasmids carrying ESBLs from commensal and clinical Escherichia coli isolates were completely sequenced and annotated along with a non-ESBL carrying IncI1 plasmid

    Host genotype affects endotoxin release in excreta of broilers at slaughter age

    Get PDF
    Host genotype, early post-hatch feeding, and pre- and probiotics are factors known to modulate the gut microbiome. However, there is a knowledge gap on the effect of both chicken genotype and these dietary strategies and their interplay on fecal microbiome composition and diversity, which, in turn, can affect the release of endotoxins in the excreta of broilers. Endotoxins are a major concern as they can be harmful to both animal and human health. The main goal of the current study was to investigate whether it was possible to modulate the fecal microbiome, thereby reducing endotoxin concentrations in the excreta of broiler chickens. An experiment was carried out with a 2 × 2 × 2 factorial arrangement including the following three factors: 1) genetic strain (fast-growing Ross 308 vs. slower growing Hubbard JA757); 2) no vs. combined use of probiotics and prebiotics in the diet and drinking water; and 3) early feeding at the hatchery vs. non-early feeding. A total of 624 Ross 308 and 624 Hubbard JA757 day-old male broiler chickens were included until d 37 and d 51 of age, respectively. Broilers ( N = 26 chicks/pen) were housed in a total of 48 pens, and there were six replicate pens/treatment groups. Pooled cloacal swabs ( N = 10 chickens/pen) for microbiome and endotoxin analyses were collected at a target body weight (BW) of 200 g, 1 kg, and 2.5 kg. Endotoxin concentration significantly increased with age ( p = 0.01). At a target BW of 2.5 kg, Ross 308 chickens produced a considerably higher amount of endotoxins ( Δ = 552.5 EU/mL) than the Hubbard JA757 chickens ( p < 0.01). A significant difference in the Shannon index was observed for the interaction between the use of prebiotics and probiotics, and host genotype ( p = 0.02), where Ross 308 chickens with pre-/probiotics had lower diversity than Hubbard JA757 chickens with pre-/probiotics. Early feeding did not affect both the fecal microbiome and endotoxin release. Overall, the results suggest that the chicken genetic strain may be an important factor to take into account regarding fecal endotoxin release, although this needs to be further investigated under commercial conditions

    Immune Responses and Pathogenesis following Experimental SARS-CoV-2 Infection in Domestic Cats

    Get PDF
    Several reports demonstrated the susceptibility of domestic cats to SARS-CoV-2 infection. Here, we describe a thorough investigation of the immune responses in cats after experimental SARS-CoV-2 inoculation, along with the characterization of infection kinetics and pathological lesions. Specific pathogen-free domestic cats ( n = 12) were intranasally inoculated with SARS-CoV-2 and subsequently sacrificed on DPI (days post-inoculation) 2, 4, 7 and 14. None of the infected cats developed clinical signs. Only mild histopathologic lung changes associated with virus antigen expression were observed mainly on DPI 4 and 7. Viral RNA was present until DPI 7, predominantly in nasal and throat swabs. The infectious virus could be isolated from the nose, trachea and lungs until DPI 7. In the swab samples, no biologically relevant SARS-CoV-2 mutations were observed over time. From DPI 7 onwards, all cats developed a humoral immune response. The cellular immune responses were limited to DPI 7. Cats showed an increase in CD8+ cells, and the subsequent RNA sequence analysis of CD4+ and CD8+ subsets revealed a prominent upregulation of antiviral and inflammatory genes on DPI 2. In conclusion, infected domestic cats developed a strong antiviral response and cleared the virus within the first week after infection without overt clinical signs and relevant virus mutations

    PhoP: A Missing Piece in the Intricate Puzzle of Mycobacterium tuberculosis Virulence

    Get PDF
    Inactivation of the transcriptional regulator PhoP results in Mycobacterium tuberculosis attenuation. Preclinical testing has shown that attenuated M. tuberculosis phoP mutants hold promise as safe and effective live vaccine candidates. We focused this study to decipher the virulence networks regulated by PhoP. A combined transcriptomic and proteomic analysis revealed that PhoP controls a variety of functions including: hypoxia response through DosR crosstalking, respiratory metabolism, secretion of the major T-cell antigen ESAT-6, stress response, synthesis of pathogenic lipids and the M. tuberculosis persistence through transcriptional regulation of the enzyme isocitrate lyase. We also demonstrate that the M. tuberculosis phoP mutant SO2 exhibits an antigenic capacity similar to that of the BCG vaccine. Finally, we provide evidence that the SO2 mutant persists better in mouse organs than BCG. Altogether, these findings indicate that PhoP orchestrates a variety of functions implicated in M. tuberculosis virulence and persistence, making phoP mutants promising vaccine candidates

    Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans

    Get PDF
    Animal experiments have shown that nonhuman primates, cats, ferrets, hamsters, rabbits, and bats can be infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In addition, SARS-CoV-2 RNA has been detected in felids, mink, and dogs in the field. Here, we describe an in-depth investigation using whole-genome sequencing of outbreaks on 16 mink farms and the humans living or working on these farms. We conclude that the virus was initially introduced by humans and has since evolved, most likely reflecting widespread circulation among mink in the beginning of the infection period, several weeks before detection. Despite enhanced biosecurity, early warning surveillance, and immediate culling of animals in affected farms, transmission occurred between mink farms in three large transmission clusters with unknown modes of transmission. Of the tested mink farm residents, employees, and/or individuals with whom they had been in contact, 68% had evidence of SARS-CoV-2 infection. Individuals for which whole genomes were available were shown to have been infected with strains with an animal sequence signature, providing evidence of animal-to-human transmission of SARS-CoV-2 within mink farms

    SARS-CoV-2 infection in farmed minks, the Netherlands, April and May 2020

    Get PDF
    Respiratory disease and increased mortality occurred in minks on two farms in the Netherlands, with interstitial pneumonia and SARS-CoV-2 RNA in organ and swab samples. On both farms, at least one worker had coronavirus disease-associated symptoms before the outbreak. Variations in mink-derived viral genomes showed between-mink transmission and no infection link between the farms. Inhalable dust contained viral RNA, indicating possible exposure of workers. One worker is assumed to have attracted the virus from mink
    • …
    corecore