58,443 research outputs found
Lift and drag characteristics of a cabin monoplane
The results of flight tests conducted by the NACA to determine the lift and drag characteristics of a full-scale airplane are given herein. A Fairchild FC-2W2 cabin monoplane having a Gottingen 387 wing section was used for the tests. The maximum lift coefficient for the airplane is compared with that obtained for the Gottingen 387 airfoil in recent tests in the Variable Density Tunnel. The maximum lift coefficient for the airplane was found to be 1.50 and that for the airfoil 1.56. Although the flight tests were confined chiefly to glides with the propeller locked horizontally, data obtained with the propeller operating at zero thrust for a few angles of attack are also included
Projective-symmetric spaces
Cartanian symmetrical property of Riemannian projective-symmetric spaces - tensor geometr
Reversal Modes of Simulated Iron Nanopillars in an Obliquely Oriented Field
Stochastic micromagnetic simulations are employed to study switching in
three-dimensional magnetic nanopillars exposed to highly misaligned fields. The
switching appears to proceed through two different decay modes, characterized
by very different average lifetimes and different average values of the
transverse magnetization components.Comment: 3 pages, 4 figure
In vitro Culture of Several Rice Cultivars
Tissue culture methods have been established to regenerate certain rice (Oryza sativa L) cultivars, but regeneration of the rice cultivars widely grown in Arkansas has not been reported. This study has established an in vitroculture for the rice cultivars \u27Nortai\u27, \u27Starbonnet\u27, \u27Mars\u27, Tebonnet\u27, \u27Newbonnet\u27, and \u27Lemont\u27. Callus was induced in the dark at either 20 or 28 C from dehusked seeds cultured on Murashige and Skoog (MS) medium (Murashige and Skoog, 1962) containing 40 g L^-1 sucrose, 10 g L^1 agar, 0.5, 1.0, or 2.0 mg L^-1 1 2,4-dichlorophenoxyacetic acid (2,4-D) and adjusted to pH 5.7. After four weeks the calli were weighed, transferred onto MS medium containing no 2,4-D, and maintained in a 1 2-h photoperiod (65 uE m^-2 s^-1) at 25 ± 2 C to induce plant regeneration. Callus production was best when cultured on a medium containing 1.0 mg L^-1 2,4-D and incubated at 28 C. Plant regeneration was observed two to four weeks later. The percentage of calli regenerating platlets varied with the cultivar and the callus induction treatment. Callus induction at 20 C on a medium with a 2,4-D level less than 2.0 mg L^-1 enhanced the regenerability of most cultivars. Regenerates were transplanted to soil and grow normally to maturity. This system can be helpful in improving rice cultivars with tissue culture techniques such as somaclonal variant selection and somatic hybridization
Identification and mapping of coal refuse banks and other targets in the anthracite region
ERTS-1 MSS data covering parts of Pennsylvania's southern and eastern middle anthracite coal fields were studied to determine how well accumulations of coal refuse could be identified and mapped by computer analysis and processing. Spectral signatures of coal refuse targets were similar to water, but had higher reflectances in all channels. Relative reflectances were in the order 4 5 or = 6 7. Although no underflight photography was at hand to judge mapping success, correlation was made, with 1:24,000 scale U.S.G.S. maps dated 1947 and 1948. Coal refuse targets correlated well with existing maps
Spin-axis attitude estimation and magnetometer bias determination for the AMPTE mission
Algorithms were developed for magnetometer biases and spin axis attitude calculation. Numerical examples of the performance of the algorithm are given
Two Modes of Magnetization Switching in a Simulated Iron Nanopillar in an Obliquely Oriented Field
Finite-temperature micromagnetics simulations are employed to study the
magnetization-switching dynamics driven by a field applied at an angle to the
long axis of an iron nanopillar. A bi-modal distribution in the switching times
is observed, and evidence for two competing modes of magnetization-switching
dynamics is presented. For the conditions studied here, temperature K
and the reversal field 3160 Oe at an angle of 75 to the long axis,
approximately 70% of the switches involve unstable decay (no free-energy
barrier) and 30% involve metastable decay (a free-energy barrier is crossed).
The latter are indistinguishable from switches which are constrained to start
at a metastable free-energy minimum. Competition between unstable and
metastable decay could greatly complicate applications involving magnetization
switches near the coercive field.Comment: 19 pages, 7 figure
Localization and Diagonalization: A review of functional integral techniques for low-dimensional gauge theories and topological field theories
We review localization techniques for functional integrals which have
recently been used to perform calculations in and gain insight into the
structure of certain topological field theories and low-dimensional gauge
theories. These are the functional integral counterparts of the Mathai-Quillen
formalism, the Duistermaat-Heckman theorem, and the Weyl integral formula
respectively. In each case, we first introduce the necessary mathematical
background (Euler classes of vector bundles, equivariant cohomology, topology
of Lie groups), and describe the finite dimensional integration formulae. We
then discuss some applications to path integrals and give an overview of the
relevant literature. The applications we deal with include supersymmetric
quantum mechanics, cohomological field theories, phase space path integrals,
and two-dimensional Yang-Mills theory.Comment: 72 pages (60 A4 pages), LaTeX (to appear in the Journal of
Mathematical Physics Special Issue on Functional Integration (May 1995)
Laser cooling in the Penning trap: an analytical model for cooling rates in the presence of an axializing field
Ions stored in Penning traps may have useful applications in the field of
quantum information processing. There are, however, difficulties associated
with the laser cooling of one of the radial motions of ions in these traps,
namely the magnetron motion. The application of a small radio-frequency
quadrupolar electric potential resonant with the sum of the two radial motional
frequencies has been shown to couple these motions and to lead to more
efficient laser cooling. We present an analytical model that enables us to
determine laser cooling rates in the presence of such an 'axializing' field. It
is found that this field leads to an averaging of the laser cooling rates for
the two motions and hence improves the overall laser cooling efficiency. The
model also predicts shifts in the motional frequencies due to the axializing
field that are in qualitative agreement with those measured in recent
experiments. It is possible to determine laser cooling rates experimentally by
studying the phase response of the cooled ions to a near resonant excitation
field. Using the model developed in this paper, we study the expected phase
response when an axializing field is present.Comment: 22 pages, 7 figure
- …