51 research outputs found
Recommended from our members
Maintaining micron-size beams in collision at the interaction point of the Stanford Linear Collider
In order to maintain collisions between two micron-size beams at the interaction point of the SLC, we take advantage of the mutual electromagnetic deflection induced by one beam on the other as they cross with a nonzero relative impact parameter. We determine simultaneously the incoming and outgoing trajectory parameters of each beam on a pulse-by-pulse basis, using beam position monitors located near the IP. Comparing incoming and outgoing angles for a given beam yields the magnitude of the deflection the beam experienced during the collision from which the distance currently separating the two beams can be extracted. A simple proportional control is applied to calculate the change in upstream corrector settings to null out this distance. 3 refs., 6 figs
Recommended from our members
Generalized fast feedback system in the SLC
A generalized fast feedback system has been developed to stabilize beams at various locations in the SLC. The system is designed to perform measurements and change actuator settings to control beam states such as position, angle and energy on a pulse to pulse basis. The software design is based on the state space formalism of digital control theory. The system is database-driven, facilitating the addition of new loops without requiring additional software. A communications system, KISNet, provides fast communications links between microprocessors for feedback loops which involve multiple micros. Feedback loops have been installed in seventeen locations throughout the SLC and have proven to be invaluable in stabilizing the machine
Ontological transparency, (in)visibility, and hidden curricula:Critical pedagogy and contentious edtech
AbstractThe steady migration of higher education online has accelerated in the wake of Covid-19. The implications of this migration on critical praxis—the theory-in-practice of pedagogy—deserve further scrutiny. This paper explores how teacher and student-led educational technology research and development can help rethink online critical praxis. The paper is based on a recent research project at the University of Edinburgh that speculatively explored the potential for automation in teaching, which generated insights into current and future pedagogical practice among both teachers and students. From this project emerged a series of pedagogical positions that were centred around visions of the future of teaching in response to automation: the pedagogical potential of visibility and invisibility online, transparency, and interrogating the hidden curricula of both higher education and educational technology itself. Through the surfacing of these pedagogical positions, this paper explores how critical pedagogy can be built into the broader teacher function and begins to identify the institutional structures that could potentially impede or accelerate that process.</jats:p
Natural Splice Variant of MHC Class I Cytoplasmic Tail Enhances Dendritic Cell-Induced CD8+ T-Cell Responses and Boosts Anti-Tumor Immunity
Dendritic cell (DC)-mediated presentation of MHC class I (MHC-I)/peptide complexes is a crucial first step in the priming of CTL responses, and the cytoplasmic tail of MHC-I plays an important role in modulating this process. Several species express a splice variant of the MHC-I tail that deletes exon 7-encoding amino acids (Δ7), including a conserved serine phosphorylation site. Previously, it has been shown that Δ7 MHC-I molecules demonstrate extended DC surface half-lives, and that mice expressing Δ7-Kb generate significantly augmented CTL responses to viral challenge. Herein, we show that Δ7-Db-expressing DCs stimulated significantly more proliferation and much higher cytokine secretion by melanoma antigen-specific (Pmel-1) T cells. Moreover, in combination with adoptive Pmel-1 T-cell transfer, Δ7-Db DCs were superior to WT-Db DCs at stimulating anti-tumor responses against established B16 melanoma tumors, significantly extending mouse survival. Human DCs engineered to express Δ7-HLA-A*0201 showed similarly enhanced CTL stimulatory capacity. Further studies demonstrated impaired lateral membrane movement and clustering of human Δ7-MHC-I/peptide complexes, resulting in significantly increased bioavailability of MHC-I/peptide complexes for specific CD8+ T cells. Collectively, these data suggest that targeting exon 7-encoded MHC-I cytoplasmic determinants in DC vaccines has the potential to increase CD8+ T-cell stimulatory capacity and substantially improve their clinical efficacy
A Detailed Analysis of the Murine TAP Transporter Substrate Specificity
The transporter associated with antigen processing (TAP) supplies cytosolic peptides into the endoplasmic reticulum for binding to major histocompatibility complex (MHC) class I molecules. Its specificity therefore influences the repertoire of peptides presented by MHC molecules. Compared to human TAP, murine TAP's binding specificity has not been characterized as well, even though murine systems are widely used for basic studies of antigen processing and presentation.We performed a detailed experimental analysis of murine TAP binding specificity by measuring the binding affinities of 323 peptides. Based on this experimental data, a computational model of murine TAP specificity was constructed. The model was compared to previously generated data on human and murine TAP specificities. In addition, the murine TAP specificities for known epitopes and random peptides were predicted and compared to assess the impact of murine TAP selectivity on epitope selection.Comparisons to a previously constructed model of human TAP specificity confirms the well-established differences for peptide substrates with positively charged C-termini. In addition these comparisons show that several residues at the N-terminus of peptides which strongly influence binding to human TAP showed little effect on binding to murine TAP, and that the overall influence of the aminoterminal residues on peptide affinity for murine TAP is much lower than for the human transporter. Murine TAP also partly prefers different hydrophobic amino acids than human TAP in the carboxyterminal position. These species-dependent differences in specificity determined in vitro are shown to correlate with the epitope repertoire recognized in vivo. The quantitative model of binding specificity of murine TAP developed herein should be useful for interpreting epitope mapping and immunogenicity data obtained in humanized mouse models
MHC Class I Endosomal and Lysosomal Trafficking Coincides with Exogenous Antigen Loading in Dendritic Cells
BACKGROUND: Cross-presentation by dendritic cells (DCs) is a crucial prerequisite for effective priming of cytotoxic T-cell responses against bacterial, viral and tumor antigens; however, this antigen presentation pathway remains poorly defined. METHODOLOGY/PRINCIPAL FINDINGS: In order to develop a comprehensive understanding of this process, we tested the hypothesis that the internalization of MHC class I molecules (MHC-I) from the cell surface is directly involved in cross-presentation pathway and the loading of antigenic peptides. Here we provide the first examination of the internalization of MHC-I in DCs and we demonstrate that the cytoplasmic domain of MHC-I appears to act as an addressin domain to route MHC-I to both endosomal and lysosomal compartments of DCs, where it is demonstrated that loading of peptides derived from exogenously-derived proteins occurs. Furthermore, by chasing MHC-I from the cell surface of normal and transgenic DCs expressing mutant forms of MHC-I, we observe that a tyrosine-based endocytic trafficking motif is required for the constitutive internalization of MHC-I molecules from the cell surface into early endosomes and subsequently deep into lysosomal peptide-loading compartments. Finally, our data support the concept that multiple pathways of peptide loading of cross-presented antigens may exist depending on the chemical nature and size of the antigen requiring processing. CONCLUSIONS/SIGNIFICANCE: We conclude that DCs have 'hijacked' and adapted a common vacuolar/endocytic intracellular trafficking pathway to facilitate MHC I access to the endosomal and lysosomal compartments where antigen processing and loading and antigen cross-presentation takes place
Association of antigen processing machinery and HLA class I defects with clinicopathological outcome in cervical carcinoma
HLA class I loss is a significant mechanism of immune evasion by cervical carcinoma, interfering with the development of immunotherapies and cancer vaccines. We report the systematic investigation of HLA class I and antigen processing machinery component expression and association with clinical outcome. A tissue microarray containing carcinoma lesions from 109 cervical carcinoma patients was stained for HLA class I heavy chains, β2-microglobulin, LMP2, LMP7, LMP10, TAP1, TAP2, ERAP1, tapasin, calreticulin, calnexin and ERp57. A novel staining evaluation method was used to ensure optimal accuracy and reliability of expression data, which were correlated with known clinicopathological parameters. Partial HLA class I loss was significantly associated with decreased 5-years overall survival (61% vs. 83% for normal expression; P < 0.05) and was associated with decreased 5-years disease-free survival (DFS) (65% vs. 82% for normal expression; P = 0.05). All APM components except LMP10, calnexin and calreticulin were down-regulated in a substantial number of cases and, except ERAP1, correlated significantly with HLA class I down-regulation. LMP7, TAP1 and ERAP1 loss was significantly associated with decreased overall and (except LMP7) DFS (P < 0.05 and 0.005, respectively). ERAP1 down-regulation was an independent predictor for worse overall and DFS in multivariate analysis (HR 3.08; P < 0.05 and HR 2.84; P < 0.05, respectively). HLA class I and APM component down-regulation occur frequently in cervical carcinoma, while peptide repertoire alterations due to ERAP1 loss are a major contributing factor to tumour progression and mortality
Allele-Independent Turnover of Human Leukocyte Antigen (HLA) Class Ia Molecules.
Major histocompatibility complex class I (MHCI) glycoproteins present cytosolic peptides to CD8+ T cells and regulate NK cell activity. Their heavy chains (HC) are expressed from up to three MHC gene loci (human leukocyte antigen [HLA]-A, -B, and -C in humans), whose extensive polymorphism maps predominantly to the antigen-binding groove, diversifying the bound peptide repertoire. Codominant expression of MHCI alleles is thus functionally critical, but how it is regulated is not fully understood. Here, we have examined the effect of polymorphism on the turnover rates of MHCI molecules in cell lines with functional MHCI peptide loading pathways and in monocyte-derived dendritic cells (MoDCs). Proteins were labeled biosynthetically with heavy water (2H2O), folded MHCI molecules immunoprecipitated, and tryptic digests analysed by mass spectrometry. MHCI-derived peptides were assigned to specific alleles and isotypes, and turnover rates quantified by 2H incorporation, after correcting for cell growth. MHCI turnover half-lives ranged from undetectable to a few hours, depending on cell type, activation state, donor, and MHCI isotype. However, in all settings, the turnover half-lives of alleles of the same isotype were similar. Thus, MHCI protein turnover rates appear to be allele-independent in normal human cells. We propose that this is an important feature enabling the normal function and codominant expression of MHCI alleles
- …