2,108 research outputs found

    Intrinsic instability of electronic interfaces with strong Rashba coupling

    Full text link
    We consider a model for the two-dimensional electron gas formed at the interface of oxide heterostructures, which includes a Rashba spin-orbit coupling proportional to the electric field perpendicular to the interface. Based on the standard mechanism of polarity catastrophe, we assume that the electric field is proportional to the electron density. Under these simple and general assumptions, we show that a phase separation instability occurs for realistic values of the spin-orbit coupling and of the band parameters. This could provide an intrinsic mechanism for the recently observed inhomogeneous phases at the LaAlO_3/SrTiO_3 or LaTiO_3/SrTiO_3 interfaces.Comment: 5 pages, 4 figure

    Fluorescent thermal imaging of a non-insulated pancake coil wound from high temperature superconductor tape

    Get PDF
    We have wound a 157-turn, non-insulated pancake coil with an outer diameter of 85 mm and we cooled it down to 77 K with a combination of conduction and gas cooling. Using high-speed fluorescent thermal imaging in combination with electrical measurements we have investigated the coil under load, including various ramping tests and over-current experiments. We have found found that the coil does not heat up measurably when being ramped to below its critical current. Two over-current experiments are presented, where in one case the coil recovered by itself and in another case a thermal runaway occurred. We have recorded heating in the bulk of the windings due to local defects, however the coil remained cryostable even during some over-critical conditions and heated only to about 82-85 K at certain positions. A thermal runaway was observed at the center, where the highest magnetic field and a resistive joint create a natural defect. The maximum temperature, ~100 K, was reached only in the few innermost windings around the coil former

    Crystal plasticity finite element simulations of cast α-uranium

    Get PDF
    α-uranium, the stable phase of uranium up to 670◩C, has a base-centred orthorombic crystal structure. This crystal structure gives rise to elastic and thermal anisotropy, meaning α-uranium exhibits complex deformation and fracture behaviour. Understanding the relationship between the microstructure and mechanical properties is important to prevent fracture during manufacture and usage of components. The lattice of α-uranium corresponds to a distorted close-packed-hexagonal crystal structure and it exhibits twins of both the 1st and 2nd kind. Therefore, detailed examination of the behaviour of α-uranium can also contribute to the general understanding of the interaction between plasticity, twinning and fracture in hcp crystals. Plastic deformation in α-uranium can be accommodated by 4 slip systems and 3 twin systems, previously identiïŹed by McCabe et al. These deformation modes are implemented into a crystal plasticity ïŹnite element (CPFE) material model. A temperature dependent, dislocation density based law is implemented to describe the critical resolved shear stress on the diïŹ€erent slip/twin systems. The strong anisotropic thermal expansion behaviour is taken into account to simulate the development of internal residual stresses following casting of the material. During cooling, the internal stresses in α-uranium are suïŹƒcient to induce plasticity. This eïŹ€ect is quantiïŹed using polycrystal simulations, in which ïŹrst the temperature is decreased, then plastic relaxation takes place, followed by application of a mechanical load. The asymmetry between mechanical properties in tension and compression, due to the presence of twins, is investigated. The model is calibrated using stress strain curves and the lattice strain found from published neutron diïŹ€raction experiments carried out on textured samples at ISIS. The strength of the slip systems is found to be lower than in ïŹne grained material, while the strength of the twin system is similar to single crystals. The CPFE method allows the heterogeneity of the strain between neighbouring grains and its inïŹ‚uence on the evolution of the internal stress state to be investigated

    Mothers’ Employment and their Children’s Schooling: a Joint Multilevel Analysis for India

    Get PDF
    This paper studies the relation between mothers’ employment and their children’s schooling in India, where a high number of children are not attending school at compulsory school age. Using the second National Family Health Survey, the results of a joint multi-level random effects model show that, controlling for covariates, the correlation between mothers’ employment and children’s schooling is negative. A sensitivity analysis on wealth and education deciles shows that this relation disappears in urban areas and becomes weaker in rural areas only at the top wealth deciles, but persists for the more educated mothers. The last result may be driven by the low number of females with a high level of education in India, but it also seems to envisage that, for mothers with lower education, being literate does not increase pay conditions. These findings suggest that policies aiming at improving both women’s and children’s welfare should not only pursue higher levels of education, but also target improvements in women’s conditions in the labour market.women’s employment, children’s schooling, household allocation of time, random effects, India, NFHS-2

    Phase diagrams of voltage-gated oxide interfaces with strong Rashba coupling

    Full text link
    We propose a model for the two-dimensional electron gas formed at the interface of oxide heterostructures that includes a Rashba spin-orbit coupling proportional to an electric field oriented perpendicularly to the interface. Taking into account the electron density dependence of this electric field confining the electron gas at the interface, we report the occurrence of a phase separation instability (signaled by a negative compressibility) for realistic values of the spin-orbit coupling and of the electronic band-structure parameters at zero temperature. We extend the analysis to finite temperatures and in the presence of an in-plane magnetic field, thereby obtaining two phase diagrams which exhibit a phase separation dome. By varying the gating potential the phase separation dome may shrink and vanish at zero temperature into a quantum critical point where the charge fluctuates dynamically. Similarly the phase separation may be spoiled by a planar magnetic field even at zero temperature leading to a line of quantum critical points.Comment: 17 pages, 17 figure

    Spectral properties of incommensurate charge-density wave systems

    Full text link
    The concept of frustrated phase separation is applied to investigate its consequences for the electronic structure of the high T_c cuprates. The resulting incommensurate charge density wave (CDW) scattering is most effective in creating local gaps in k-space when the scattering vector connects states with equal energy. Starting from an open Fermi surface we find that the resulting CDW is oriented along the (10)- and (or) (01)-direction which allows for a purely one-dimensional or a two-dimensional ``eggbox type'' charge modulation. In both cases the van Hove singularities are substantially enhanced, and the spectral weight of Fermi surface states near the M-points, tends to be suppressed. Remarkably, a leading edge gap arises near these points, which, in the eggbox case, leaves finite arcs of the Fermi surface gapless. We discuss our results with repect to possible consequences for photoemission experiments

    The Automobile Industry and The Mexico-Us Free Trade Agreement

    Get PDF
    This paper considers the likely effect on the automobile industry of a free trade agreement between the U.S. and Mexico. As there are currently large restrictions on imports into Mexico, one important outcome of a free trade agreement would be the opening of the Mexican market to U.S. producers. This is consistent with the history of the international auto industry and the fact that the U.S.-Canada Auto Pact opened a new, large market to U.S. manufacturers. The current state of the Mexican auto industry is considered in great detail, suggesting that the Mexican industry will continue to prosper, increasing output but also relying heavily on production from U.S. owned plants and on inputs imported from the U.S. and Canada. However, much of the existing domestically oriented industry is likely to be replaced by other North American producers. Finally, an econometric demand analysis implies that economic growth together with declines in prices to world levels could rapidly expand the size of the Mexican auto market. The free trade agreement represents an opportunity for product diversification and rationalization in the auto industry.

    School attendance of children and the work of mothers: a joint multilevel model for India.

    Get PDF
    This paper investigates the determinants of school attendance of children and their mother’s working status when the mother decides how to allocate her time and that of her children. A multilevel random effects model is applied to study the mother’s participation and the schooling status of her children in a joint framework. Using the second National Family Health Survey (NFHS-2) for India, we find that, controlling for many covariates among which wealth is the most powerful predictor, children of working mothers have a lower probability of attending school. This, together with the result that only illiterate and poor mothers with unskilled or unemployed partners have a high probability of working, points to the need for decent labour market opportunities for females. An implication of our findings is that any policy aiming both at enhancing women’s empowerment through labour and increasing children’s welfare should also target improvements in women’s conditions in the labour market

    NGN PLATFORMS FOR EMERGENCY

    Get PDF
    • 

    corecore