The concept of frustrated phase separation is applied to investigate its
consequences for the electronic structure of the high T_c cuprates. The
resulting incommensurate charge density wave (CDW) scattering is most effective
in creating local gaps in k-space when the scattering vector connects states
with equal energy. Starting from an open Fermi surface we find that the
resulting CDW is oriented along the (10)- and (or) (01)-direction which allows
for a purely one-dimensional or a two-dimensional ``eggbox type'' charge
modulation. In both cases the van Hove singularities are substantially
enhanced, and the spectral weight of Fermi surface states near the M-points,
tends to be suppressed. Remarkably, a leading edge gap arises near these
points, which, in the eggbox case, leaves finite arcs of the Fermi surface
gapless. We discuss our results with repect to possible consequences for
photoemission experiments