251 research outputs found

    Nonequilibrium Langevin Approach to Quantum Optics in Semiconductor Microcavities

    Get PDF
    Recently the possibility of generating nonclassical polariton states by means of parametric scattering has been demonstrated. Excitonic polaritons propagate in a complex interacting environment and contain real electronic excitations subject to scattering events and noise affecting quantum coherence and entanglement. Here we present a general theoretical framework for the realistic investigation of polariton quantum correlations in the presence of coherent and incoherent interaction processes. The proposed theoretical approach is based on the {\em nonequilibrium quantum Langevin approach for open systems} applied to interacting-electron complexes described within the dynamics controlled truncation scheme. It provides an easy recipe to calculate multi-time correlation functions which are key-quantities in quantum optics. As a first application, we analyze the build-up of polariton parametric emission in semiconductor microcavities including the influence of noise originating from phonon induced scattering.Comment: some corrections in the presentation mad

    The parity-violating asymmetry in the 3He(n,p)3H reaction

    Full text link
    The longitudinal asymmetry induced by parity-violating (PV) components in the nucleon-nucleon potential is studied in the charge-exchange reaction 3He(n,p)3H at vanishing incident neutron energies. An expression for the PV observable is derived in terms of T-matrix elements for transitions from the {2S+1}L_J=1S_0 and 3S_1 states in the incoming n-3He channel to states with J=0 and 1 in the outgoing p-3H channel. The T-matrix elements involving PV transitions are obtained in first-order perturbation theory in the hadronic weak-interaction potential, while those connecting states of the same parity are derived from solutions of the strong-interaction Hamiltonian with the hyperspherical-harmonics method. The coupled-channel nature of the scattering problem is fully accounted for. Results are obtained corresponding to realistic or chiral two- and three-nucleon strong-interaction potentials in combination with either the DDH or pionless EFT model for the weak-interaction potential. The asymmetries, predicted with PV pion and vector-meson coupling constants corresponding (essentially) to the DDH "best values" set, range from -9.44 to -2.48 in units of 10^{-8}, depending on the input strong-interaction Hamiltonian. This large model dependence is a consequence of cancellations between long-range (pion) and short-range (vector-meson) contributions, and is of course sensitive to the assumed values for the PV coupling constants.Comment: 19 pages, 15 tables, revtex

    Dynamics-Controlled Truncation Scheme for Nonlinear Dynamics in Semiconductor Microcavities

    Get PDF
    We present a systematic theory of Coulomb-induced correlation effects in the nonlinear optical processes within the strong-coupling regime. In this paper we shall set a dynamics controlled truncation scheme \cite{Axt Stahl} microscopic treatment of nonlinear parametric processes in SMCs including the electromagnetic field quantization. It represents the starting point for the microscopic approach to quantum optics experiments in the strong coupling regime without any assumption on the quantum statistics of electronic excitations (excitons) involved. We exploit a previous technique, used in the semiclassical context, which, once applied to four-wave mixing in quantum wells, allowed to understand a wide range of observed phenomena \cite{Sham PRL95}. We end up with dynamical equations for exciton and photon operators which extend the usual semiclassical description of Coulomb interaction effects, in terms of a mean-field term plus a genuine non-instantaneous four-particle correlation, to quantum optical effects.Comment: preprint version, no figures an entire section adde

    Decoherence-Free Emergence of Macroscopic Local Realism for entangled photons in a cavity

    Get PDF
    We investigate the influence of environmental noise on polarization entangled light generated by parametric emission in a cavity. By adopting a recently developed separability criterion, we show that: i) self-stimulation may suppress the detrimental influence of noise on entanglement; ii) when self-stimulation becomes effective, a classical model of parametric emission incorporating noise provides the same results of quantum theory for the expectation values involved in the separability criterion. Moreover we show that, in the macroscopic limit, it is impossible to observe violations of local realism with measurements of nn-particle correlations, whatever n but finite. These results provide an interesting example of the emergence of macroscopic local realism in the presence of strong entanglement even in the absence of decoherence.Comment: 1 figur

    Abnormal plasticity of sensorimotor circuits extends beyond the affected body part in focal dystonia

    Get PDF
    Objective: To test whether abnormal sensorimotor plasticity in focal hand dystonia is a primary abnormality or is merely a consequence of the dystonic posture. Methods: This study used the paired associative stimulation (PAS) paradigm, an experimental intervention, capable of producing long term potentiation (LTP) like changes in the sensorimotor system in humans. PAS involves transcranial magnetic stimulation combined with median nerve stimulation. 10 patients with cranial and cervical dystonia, who showed no dystonic symptoms in the hand, and nine patients with hemifacial spasm (HFS), a non-dystonic condition, were compared with 10 healthy age matched controls. Motor evoked potential amplitudes and cortical silent period (CSP) duration were measured at baseline before PAS and for up to 60 min (T0, T30 and T60) after PAS in the abductor pollicis brevis and the first dorsal interosseus muscles. Results: Patients with dystonia showed a stronger increase in corticospinal excitability than healthy controls and patients with HFS. In addition, patients with dystonia showed a loss of topographical specificity of PAS induced effects, with a facilitation in both the median and ulnar innervated muscles. While PAS conditioning led to a prolonged CSP in healthy controls and patients with HFS, it had no effect on the duration of the CSP in patients with cranial and cervical dystonia. Conclusion: The data suggests that excessive motor cortex plasticity is not restricted to the circuits clinically affected by dystonia but generalises across the entire sensorimotor system, possibly representing an endophenotypic trait of the disease

    Botulinum toxin A treatment for primary hemifacial spasm - A 10-year multicenter study

    Get PDF
    BACKGROUND: Botulinum toxin A (BTX) is the currently preferred symptomatic treatment for primary hemifacial spasm (HFS), but its long-term efficacy and safety are not known. OBJECTIVE: To assess the long-term effectiveness and safety of BTX in the treatment of primary HFS. DESIGN: Retrospective review of medical records of the 1st and 10th years of treatment. SETTING: Outpatient clinics of 4 Italian university centers in the Italian Movement Disorders Study Group. PARTICIPANTS: A series of 65 patients with primary HFS who had received BTX injections regularly for at least 10 years. MAIN OUTCOME MEASURES: Mean duration of improvement and quality of the effect induced by the preceding treatment (measured using a patient self-evaluation scale) and occurrence and duration of adverse effects in the 1st and 10th years of treatment. RESULTS: Using a mean BTX dose per treatment session similar to that used by others, we obtained a 95% response rate and an overall mean duration of improvement of 12.6 weeks during year 1. The effectiveness of BTX in relieving the symptoms of primary HFS, as measured by the response rate and average duration of improvement, remained unchanged in the 1st and 10th years. Patients needed statistically similar BTX doses in the 1st and 10th years. The rate of local adverse effects (including upper lid ptosis, facial weakness, and diplopia) diminished significantly in the 10th year of treatment. CONCLUSION: Treatment with BTX effectively induces sustained relief from symptoms of HFS in the long term, with only minimal and transient adverse reactions

    Spatial Integration of Somatosensory Inputs during Sensory-Motor Plasticity Phenomena Is Normal in Focal Hand Dystonia.

    Get PDF
    Background: Surround inhibition is a system that sharpens sensation by creating an inhibitory zone around the central core of activation. In the motor system, this mechanism probably contributes to the selection of voluntary movements, and it seems to be lost in dystonia. Objectives. To explore if sensory information is abnormally processed and integrated in focal hand dystonia (FHD) and if surround inhibition phenomena are operating during sensory-motor plasticity and somatosensory integration in normal humans and in patients with FHD. Methods. We looked at the MEP facilitation obtained after 5 Hz repetitive paired associative stimulation of median (PAS M), ulnar (PAS U), and median + ulnar nerve (PAS MU) stimulation in 8 normal subjects and 8 FHD. We evaluated the ratio MU/(M + U) ∗ 100 and the spatial and temporal somatosensory integration recording the somatosensory evoked potentials (SEPs) evoked by a dual nerve input. Results: FHD had two main abnormalities: first, the amount of facilitation was larger than normal subjects; second, the spatial specificity was lost. The MU/(M + U) ∗ 100 ratio was similar in healthy subjects and in FHD patients, and the somatosensory integration was normal in this subset of patients. Conclusions. The inhibitory integration of somatosensory inputs and the somatosensory inhibition are normal in patients with focal dystonia as well as lateral surrounding inhibition phenomena during sensory-motor plasticity in FHD

    Signatures of three-nucleon interactions in few-nucleon systems

    Get PDF
    Recent experimental results in three-body systems have unambiguously shown that calculations based only on nucleon-nucleon forces fail to accurately describe many experimental observables and one needs to include effects which are beyond the realm of the two-body potentials. This conclusion owes its significance to the fact that experiments and calculations can both be performed with a high accuracy. In this review, both theoretical and experimental achievements of the past decade will be underlined. Selected results will be presented. The discussion on the effects of the three-nucleon forces is, however, limited to the hadronic sector. It will be shown that despite the major successes in describing these seemingly simple systems, there are still clear discrepancies between data and the state-of-the-art calculations.Comment: accepted for publication in Rep. Prog. Phy

    Variational Calculation on A=3 and 4 Nuclei with Non-Local Potentials

    Full text link
    The application of the hyperspherical harmonic approach to the case of non-local two-body potentials is described. Given the properties of the hyperspherical harmonic functions, there are no difficulties in considering the approach in both coordinate and momentum space. The binding energies and other ground state properties of A=3 and 4 nuclei are calculated using the CD Bonn 2000 and N3LO two-body potentials. The results are shown to be in excellent agreement with corresponding ones obtained by other accurate techniques.Comment: 12 pages, 6 tables, RevTex
    • …
    corecore