973 research outputs found

    Effects of temperature and plant diversity on orthopterans and leafhoppers in calcareous dry grasslands

    Get PDF
    Abstract: In mountains, current land-use changes are altering plant communities of semi-natural grasslands with potential cascading effects on associated herbivores. Besides vegetation changes, temperature is also a key driver of insect diversity, and in the European Alps is predicted to increase by 0.25\ua0\ub0C per decade. Understanding herbivore responses to temperature and plant composition changes in mountain environments is of increasing importance. Our study aims at investigating the response to temperature and plant diversity and composition of two key herbivore groups (orthopterans and leafhoppers) belonging to contrasting feeding guilds (chewers vs. sap-feeders). We hypothesized that orthopteran diversity would be driven by temperature while leafhoppers by plant community composition. We selected 15 dry calcareous grasslands ranging from 100 to 1330\ua0m a.s.l. along two independent gradients of plant diversity and temperature. We sampled orthopteran and leafhopper species richness and abundance by sweep-netting. Consistent with their low feeding specialisation, orthopteran species richness and community composition were only driven by temperature. By contrast, leafhopper species richness was not affected by temperature nor by plant diversity but leafhopper community composition was strongly influenced by plant species composition. This response can be explained by the higher host feeding specialisation of many leafhopper species. Species rarity and mobility did not change the response of the diversity of both groups, but orthopteran abundance increased with temperature only for highly mobile species. Altogether, our results suggest that future responses of grassland herbivores to vegetation changes and temperature warming are highly variable and depend on the feeding strategy and specialisation of the focal herbivore group. Implications for insect conservation: Leafhoppers emerged to be particularly sensitive to potential management or climate-induced change in vegetation composition, while orthopterans are expected to respond directly to temperature warming due to their relaxed association with plant community diversity and composition

    Turning Points in the Evolution of Isolated Neutron Stars' Magnetic Fields

    Get PDF
    During the life of isolated neutron stars (NSs) their magnetic field passes through a variety of evolutionary phases. Depending on its strength and structure and on the physical state of the NS (e.g. cooling, rotation), the field looks qualitatively and quantitatively different after each of these phases. Three of them, the phase of MHD instabilities immediately after NS's birth, the phase of fallback which may take place hours to months after NS's birth, and the phase when strong temperature gradients may drive thermoelectric instabilities, are concentrated in a period lasting from the end of the proto--NS phase until 100, perhaps 1000 years, when the NS has become almost isothermal. The further evolution of the magnetic field proceeds in general inconspicuous since the star is in isolation. However, as soon as the product of Larmor frequency and electron relaxation time, the so-called magnetization parameter, locally and/or temporally considerably exceeds unity, phases, also unstable ones, of dramatic changes of the field structure and magnitude can appear. An overview is given about that field evolution phases, the outcome of which makes a qualitative decision regarding the further evolution of the magnetic field and its host NS.Comment: References updated, typos correcte

    Emission Spectra of Fallback Disks Around Young Neutron Stars

    Full text link
    The nature of the energy source powering anomalous X-ray pulsars is uncertain. Proposed scenarios involve either an ultramagnetized neutron star, or accretion onto a neutron star. We consider the accretion model proposed recently by Chatterjee, Hernquist & Narayan, in which a disk is fed by fallback material following a supernova. We compute the optical, infrared, and submillimeter emission expected from such a disk, including both viscous dissipation and reradiation of X-ray flux impinging on the disk from the pulsar. We find that it is possible with current instruments to put serious constraints on this and on other accretion models of AXPs. Fallback disks could also be found around isolated radio pulsars and we compute the corresponding spectra. We show that the excess emission in the R and I bands observed for the pulsar PSR 0656+14 is broadly consistent with emission from a disk.Comment: 12 pages, 1 table, 4 figures, submitted to Ap

    XMM-Newton Observations of Radio Pulsars B0834+06 and B0826-34 and Implications for Pulsar Inner Accelerator

    Full text link
    We report the X-ray observations of two radio pulsars with drifting subpulses: B0834 + 06 and B0826 - 34 using \xmm\. PSR B0834 + 06 was detected with a total of 70 counts from the three EPIC instruments over 50 ks exposure time. Its spectrum was best described as that of a blackbody (BB) with temperature Ts=(2.00.9+2.0)×106T_s=(2.0^{+2.0}_{-0.9}) \times 10^6 K and bolometric luminosity of Lb=(8.64.4+14.2)×1028L_b=(8.6^{+14.2}_{-4.4}) \times 10^{28} erg s1^{-1}. As it is typical in pulsars with BB thermal components in their X-ray spectra, the hot spot surface area is much smaller than that of the canonical polar cap, implying a non-dipolar surface magnetic field much stronger than the dipolar component derived from the pulsar spin-down (in this case about 50 times smaller and stronger, respectively). The second pulsar PSR B0826 - 34 was not detected over 50 ks exposure time, giving an upper limit for the bolometric luminosity Lb1.4×1029L_b \leq 1.4 \times 10^{29} erg s1^{-1}. We use these data as well as the radio emission data concerned with drifting subpulses to test the Partially Screened Gap (PSG) model of the inner accelerator in pulsars.Comment: Accepted for publication by The Astrophysical Journa

    Filling the void - enriching the feature space of successful stopping

    Get PDF
    The ability to inhibit behavior is crucial for adaptation in a fast changing environment and is commonly studied with the stop signal task. Current EEG research mainly focuses on the N200 and P300 ERPs and corresponding activity in the theta and delta frequency range, thereby leaving us with a limited understanding of the mechanisms of response inhibition. Here, 15 functional networks were estimated from time-frequency transformed EEG recorded during processing of a visual stop signal task. Cortical sources underlying these functional networks were reconstructed, and a total of 45 features, each representing spectrally and temporally coherent activity, were extracted to train a classifier to differentiate between go and stop trials. A classification accuracy of 85.55% for go and 83.85% for stop trials was achieved. Features capturing fronto-central delta- and theta activity, parieto-occipital alpha, fronto-central as well as right frontal beta activity were highly discriminating between trial-types. However, only a single network, comprising a feature defined by oscillatory activity below 12 Hz, was associated with a generator in the opercular region of the right inferior frontal cortex and showed the expected associations with behavioral inhibition performance. This study pioneers by providing a detailed ranking of neural features regarding their information content for stop and go differentiation at the single-trial level, and may further be the first to identify a scalp EEG marker of the inhibitory control network. This analysis allows for the characterization of the temporal dynamics of response inhibition by matching electrophysiological phenomena to cortical generators and behavioral inhibition performanc

    I know your face but can’t remember your name:Age-related differences in the FNAME-12NL

    Get PDF
    OBJECTIVE: The Face-Name Associative Memory test (FNAME) has recently received attention as a test for early diagnosis of Alzheimer’s disease. So far, however, there has been no systematic investigation of the effects of aging. Here, we aimed to assess the extent to which the FNAME performance is modulated by normal ageing. METHOD: In a first step, we adapted the FNAME material to the Dutch population. In a second step, younger (n = 29) and older adults (n = 29) were compared on recall and recognition performance. RESULTS: Significant age effects on name recall were observed after the first exposure of new face-name pairs: younger adults remembered eight, whereas older adults remembered a mean of four out of twelve names. Although both age groups increased the number of recalled names with repeated face-name exposure, older adults did not catch up with the performance of the younger adults, and the age-effects remained stable. Despite of that, both age groups maintained their performance after a 30-min delay. Considering recognition, no age differences were demonstrated, and both age groups succeeded in the recognition of previously shown faces and names when presented along with distractors. CONCLUSIONS: This study presents for the first time the results of different age groups regarding cross-modal associative memory performance on the FNAME. The recall age effects support the hypothesis of age-related differences in associative memory. To use the FNAME as an early cognitive biomarker, further subscales are suggested to increase sensitivity and specificity in the clinical context
    corecore