1,522 research outputs found

    The neutron star in Cassiopeia A: equation of state, superfluidity, and Joule heating

    Full text link
    The thermomagnetic evolution of the young neutron star in Cassiopea A is studied by considering fast neutrino emission processes. In particular, we consider neutron star models obtained from the equation of state computed in the framework of the Brueckner-Bethe-Goldstone many-body theory and variational methods, and models obtained with the Akmal-Pandharipande-Ravenhall equation of state. It is shown that it is possible to explain a fast cooling regime as the one observed in the neutron star in Cassiopea A if the Joule heating produced by dissipation of the small-scale magnetic field in the crust is taken into account. We thus argue that it is difficult to put severe constraints on the superfluid gap if the Joule heating is considered.Comment: 4 pages, 2 figures, to appear on A&A Letter

    Cosmological Perturbations in Renormalization Group Derived Cosmologies

    Get PDF
    A linear cosmological perturbation theory of an almost homogeneous and isotropic perfect fluid Universe with dynamically evolving Newton constant GG and cosmological constant Λ\Lambda is presented. A gauge-invariant formalism is developed by means of the covariant approach, and the acoustic propagation equations governing the evolution of the comoving fractional spatial gradients of the matter density, GG, and Λ\Lambda are thus obtained. Explicit solutions are discussed in cosmologies where both GG and Λ\Lambda vary according to renormalization group equations in the vicinity of a fixed point.Comment: 22 pages, revtex, subeqn.sty, to appear on IJMP

    Networks of equities in financial markets

    Full text link
    We review the recent approach of correlation based networks of financial equities. We investigate portfolio of stocks at different time horizons, financial indices and volatility time series and we show that meaningful economic information can be extracted from noise dressed correlation matrices. We show that the method can be used to falsify widespread market models by directly comparing the topological properties of networks of real and artificial markets.Comment: 9 pages, 8 figures. Accepted for publication in EPJ

    The MEV project: design and testing of a new high-resolution telescope for Muography of Etna Volcano

    Get PDF
    The MEV project aims at developing a muon telescope expressly designed for the muography of Etna Volcano. In particular, one of the active craters in the summit area of the volcano would be a suitable target for this experiment. A muon tracking telescope with high imaging resolution was built and tested during 2017. The telescope is a tracker based on extruded scintillating bars with WLS fibres and featuring an innovative read-out architecture. It is composed of three XY planes with a sensitive area of \SI{1}{m^2}; the angular resolution does not exceeds \SI{0.4}{\milli\steradian} and the total angular aperture is about ±\pm\SI{45}{\degree}. A special effort concerned the design of mechanics and electronics in order to meet the requirements of a detector capable to work in a hostile environment such as the top of a tall volcano, at a far distance from any facility. The test phase started in January 2017 and ended successfully at the end of July 2017. An extinct volcanic crater (the Monti Rossi, in the village of Nicolosi, about 15km from Catania) is the target of the measurement. The detector acquired data for about 120 days and the preliminary results are reported in this work

    Estimation of Dynamical Noise Power in Unknown Systems

    Get PDF
    Noise can be modeled as a sequence of random variables defined on a probability space that may be added to a given dynamical system TT, which is a map on a phase space. In the non-trivial case of dynamical noise {εn}n\lbrace \varepsilon _{n}\rbrace _{n}, where εn\varepsilon _{n} follows a Gaussian distribution N(0,σ2)\mathcal {N}(0,\sigma ^{2}) and the system output is xn=T(xn−1;x0)+εnx_{n} = T(x_{n-1};x_{0})+\varepsilon _{n}, without any specific knowledge or assumption about TT, the quantitative estimation of the noise power σ2\sigma ^{2} is a challenge. Here, we introduce a formal method based on the nonlinear entropy profile to estimate the dynamical noise power σ2\sigma ^{2} without requiring knowledge of the specific TT function. We tested the correctness of the proposed method using time series generated from Logistic maps and Pomeau-Manneville systems under different conditions. Our results demonstrate that the proposed estimation algorithm can properly discern different noise levels without any a priori information

    Comment on "Feynman Effective Classical Potential in the Schrodinger Formulation"

    Full text link
    We comment on the paper "Feynman Effective Classical Potential in the Schrodinger Formulation"[Phys. Rev. Lett. 81, 3303 (1998)]. We show that the results in this paper about the time evolution of a wave packet in a double well potential can be properly explained by resorting to a variational principle for the effective action. A way to improve on these results is also discussed.Comment: 1 page, 2eps figures, Revte

    Global simulations of Tayler instability in stellar interiors: a long-time multi-stage evolution of the magnetic field

    Full text link
    Magnetic fields have been observed in massive Ap/Bp stars and presumably are also present in the radiative zone of solar-like stars. Yet, to date there is no clear understanding of the dynamics of the magnetic field in stably stratified layers. A purely toroidal magnetic field configuration is known to be unstable, developing mainly non-axisymmetric modes. Rotation and a small poloidal field component may lead to a stable configuration. Here we perform global MHD simulations with the EULAG-MHD code to explore the evolution of a toroidal magnetic field located in a layer whose stratification resembles the solar tachocline. Our numerical experiments allow us to explore the initial unstable phase as well as the long-term evolution of the magnetic field. During the first Alfven cycles, we observe the development of the Tayler instability with the prominent longitudinal wavenumber, m=1m=1. Rotation decreases the growth rate of the instability, and eventually suppresses it. However, after a stable phase, sudden energy surges lead to the development of higher order modes even for fast rotation. These modes extract energy from the initial toroidal field. Nevertheless, our results show that sufficiently fast rotation leads to a lower saturation energy of the unstable modes, resulting in a magnetic topology with only a small fraction of poloidal field which remains steady for several hundreds of Alfven travel times. At this stage, the system becomes turbulent and the field is prone to turbulent diffusion. The final toroidal-poloidal configuration of the magnetic field may represent an important aspect of the field generation and evolution in stably-stratified layers.Comment: 15 pages, 16 figures, submitted to MNRA

    The role of Background Independence for Asymptotic Safety in Quantum Einstein Gravity

    Full text link
    We discuss various basic conceptual issues related to coarse graining flows in quantum gravity. In particular the requirement of background independence is shown to lead to renormalization group (RG) flows which are significantly different from their analogs on a rigid background spacetime. The importance of these findings for the asymptotic safety approach to Quantum Einstein Gravity (QEG) is demonstrated in a simplified setting where only the conformal factor is quantized. We identify background independence as a (the ?) key prerequisite for the existence of a non-Gaussian RG fixed point and the renormalizability of QEG.Comment: 2 figures. Talk given by M.R. at the WE-Heraeus-Seminar "Quantum Gravity: Challenges and Perspectives", Bad Honnef, April 14-16, 2008; to appear in General Relativity and Gravitatio
    • …
    corecore